Skip to main content
Log in

Salicylic acid and photosynthesis: signalling and effects

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is a well-known signalling molecule playing a role in local and systemic acquired resistance against pathogens as well as in acclimation to certain abiotic stressors. As a stress-related signalling compound, it may directly or indirectly affect various physiological processes, including photosynthesis. The effects of exogenously applied SA on plant physiological processes under optimal environmental conditions are controversial. Several studies suggest that SA may have a positive effect on germination or plant growth in various plant species. However, SA may also act as a stress factor, having a negative influence on various physiological processes. Its mode of action depends greatly on several factors, such as the plant species, the environmental conditions (light, temperature, etc.) and the concentration. Exogenous SA may also alleviate the damaging effects of various stress factors, and this protection may also be manifested as higher photosynthetic capacity. Unfavourable environmental conditions have also been shown to increase the endogenous SA level in plants. Recent results strongly suggest that controlled SA levels are important in plants for optimal photosynthetic performance and for acclimation to changing environmental stimuli. The present review discusses the effects of exogenous and endogenous SA on the photosynthetic processes under optimal and stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CA:

Cinnamic acid

C i :

Intercellular CO2 concentration

F m :

Maximum chlorophyll-a fluorescence at dark-adapted state

F v :

Variable chlorophyll-a fluorescence at dark-adapted state

g s :

Stomatal conductivity

ICS:

Isochorismate synthase

NPQ:

Non-photochemical fluorescence quenching

oHCA:

ortho-Hydroxycinnamic acid

PAL:

Phenylalanine ammonia lyase

PEPC:

Phosphoenolpyruvate carboxylase

P N :

Net photosynthetic rate

PS:

Photosystem

ROS:

Reactive oxygen species

SA:

Salicylic acid

TL:

Thermoluminescence

ΦPSII :

Actual photochemical efficiency of PSII

References

  • Alibert G, Boudet A, Ranjeva R (1972) Studies on the enzymes catalysts of biosynthesis of phenolic acids in Quercus pedunculata. III. Sequential formation of cinnamic, p-coumaric and caffeic acids from phenylalanine by isolated cell organelles. Physiol Plant 27:240–243

    Article  CAS  Google Scholar 

  • Ananieva EA, Alexieva VS, Popova LP (2002) Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J Plant Physiol 159:685–693

    Article  CAS  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Bilger W, Bjorkman O (1991) Temperature dependence of violaxanthin deepoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 184:226–234

    Article  PubMed  CAS  Google Scholar 

  • Çag S, Cevahir-Öz G, Sarsag M, Gören-Saglam N (2009) Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons. Pak J Bot 41:2297–2303

    Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Metraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  PubMed  CAS  Google Scholar 

  • Chandra A, Bhatt RK (1998) Biochemical physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica 35:255–258

    Article  CAS  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Sign Behav 4:493–496

    Article  CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr, Bent AF (2000) The Arabidopsis dnd1 ‘defense, no death’ gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ducruet JM (2003) Chlorophyll thermoluminescence of leaf discs: simple instruments and progress in signal interpretation open the way to new ecophysiological indicators. J Exp Bot 54:2419–2430

    Article  PubMed  CAS  Google Scholar 

  • El-Basyouni SZ, Chen D, Ibrahim RK, Neish AC, Towers GHN (1964) The biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3:485–492

    Article  CAS  Google Scholar 

  • Enyedi AJ (1999) Induction of salicylic acid biosynthesis and systemic acquired resistance using the active oxygen species generator rose Bengal. J Plant Physiol 154:106–112

    Article  CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284

    Article  CAS  Google Scholar 

  • Fraser CM, Chappel C (2011) The phenylpropanoid pathway in Arabidopsis. Arab Book 9:e0152

    Article  Google Scholar 

  • Gawroński P, Górecka M, Bederska M, Rusaczonek A, Ślesak I, Kruk J, Karpiński S (2013) Isochorismate synthase 1 is required for thylakoid organization, optimal plastoquinone redox status, and state transitions in Arabidopsis thaliana. J Exp Bot 64:3669–3679

    Article  PubMed  PubMed Central  Google Scholar 

  • Gémes K, Poór P, Sulyok Z, Szepesi Á, Szabó M, Tari I (2008) Role of salicylic acid pretreatment in the photosynthetic performance of tomato plants (Lycopersicon esculentum Mill. L. cvar. Rio Fuego) under salt stress. Acta Biol Szegediensis 52:161–162

    Google Scholar 

  • Ghai N, Setia RC, Setia N (2002) Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphology 52:83–87

    Google Scholar 

  • Gutiérrez-Coronado MA, Trejo-López C, Larqué-Saavedra A (1998) Effect of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol Biochem 36:563–565

    Article  Google Scholar 

  • Hayat S, Fariduddin Q, Ali B, Ahmad A (2005) Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron Hung 53:433–437

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Herrman KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Article  Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Janda T, Szalai G, Antunovics Z, Horváth E, Páldi E (2000) Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica 45:29–33

    Google Scholar 

  • Janda T, Szalai G, Leskó K, Yordanova R, Apostol S, Popova LP (2007) Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68:1674–1682

    Article  PubMed  CAS  Google Scholar 

  • Janda K, Hideg É, Szalai G, Kovács L, Janda T (2012) Salicylic acid may indirectly influence the photosynthetic electron transport. J Plant Physiol 169:971–978

    Article  PubMed  CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  PubMed  CAS  Google Scholar 

  • Klambt HD (1962) Conversion in plants of benzoic acid to salicylic acid and its β-d-glucoside. Nature 196:491

    Article  Google Scholar 

  • Kosova K, Prasil IT, Vitamvas P, Dobrev P, Motyka V, Flokova K, Novak O, Turecková V, Rolcik J, Pesek B, Travnickova A, Gaudinova A, Galiba G, Janda T, Vlasakova E, Prasilova P, Vankova R (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    Article  PubMed  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  PubMed  CAS  Google Scholar 

  • Krik V, Bouyer D, Schöbinger U, Bechtold N, Herzog M, Bonneville JM, Hülskamp M (2001) CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein. Curr Biol 11:1891–1895

    Article  Google Scholar 

  • Kusumi K, Yaeno T, Kojo K, Hirayama M, Hirokawa D, Yara A, Iba K (2006) The role of salicylic acid in the glutathione-mediated protection against photooxidative stress in rice. Physiol Plant 128:651–661

    Article  CAS  Google Scholar 

  • Li L, Dong CJ, Shang QM (2013) Role of endogenous salicylic acid in responding of cucumber leaf photosynthetic systems to low temperature stress. Acta Hortic Sinica 40:487–497

    CAS  Google Scholar 

  • Liu W, Ai XZ, Liang WJ, Wang HT, Liu SX, Zheng N (2009) Effects of salicylic acid on the leaf photosynthesis and antioxidant enzyme activities of cucumber seedlings under low temperature and light intensity. Chin J Appl Ecol 20:441–445

    CAS  Google Scholar 

  • Majláth I, Szalai G, Soós V, Sebestyén E, Balázs E, Vanková R, Dobrev PI, Tandori J, Janda T (2012) Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol Plant 145:296–314

    Article  PubMed  Google Scholar 

  • Maslenkova L, Peeva V, Stojnova Z, Popova L (2009) Salicylic acid-induced changes in photosystem II reactions in barley plants. Biotechnol Biotechnol Equip (23/2009/se special edition/on-line)

  • Mateo A, Mühlenbock P, Rusterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpinski S (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57:1795–1807

    Article  PubMed  CAS  Google Scholar 

  • Metodiev MV, Kicheva MI, Stoinova ZG, Popova LP (2002) Two-dimensional electrophoretic analysis of salicylic acid-induced changes in polypeptide pattern of barley leaves. Biol Plant 45:585–588

    Article  CAS  Google Scholar 

  • Meuwly P, Métraux JP (1993) Ortho-anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Anal Biochem 214:500–505

    Article  PubMed  CAS  Google Scholar 

  • Moradkhani S, Khavari Nejad RA, Dilmaghani K, Chaparzadeh N (2012) Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J Stress Physiol Biochem 8:78–89

    Google Scholar 

  • Munné-Bosch S, Penuelas J, Llusia J (2007) A deficiency in salicylic acid alters isoprenoid accumulation in water-stressed NahG transgenic Arabidopsis plants. Plant Sci 172:756–762

    Article  Google Scholar 

  • Noreen S, Ashraf M (2008) Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis. Pak J Bot 40:1657–1663

    CAS  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiol Plant 125:356–364

    Article  Google Scholar 

  • Pál M, Kovács V, Vida G, Szalai G, Janda T (2013) Changes induced by powdery mildew in the salicylic acid and polyamine contents and the antioxidant enzyme activities of wheat lines. Eur J Plant Pathol 135:35–47

    Article  Google Scholar 

  • Pál M, Kovács V, Szalai G, Soós V, Ma X, Liu H, Mei H, Janda T (2014) Salicylic acid and abiotic stress responses in rice. J Agron Crop Sci 200:1–11

    Article  Google Scholar 

  • Pancheva TV, Popova LP (1998) Effect of salicylic acid on the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley leaves. J Plant Physiol 152:381–386

    Article  CAS  Google Scholar 

  • Pancheva TV, Popova LP, Uzunova AN (1996) Effects of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63

    Article  CAS  Google Scholar 

  • Penuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10:166–169

    Article  PubMed  CAS  Google Scholar 

  • Poór P, Tari I (2012) Regulation of stomatal movement and photosynthetic activity in guard cells of tomato abaxial epidermal peels by salicylic acid. Funct Plant Biol 39:1028–1037

    Article  Google Scholar 

  • Poór P, Gémes K, Horváth F, Szepesi Á, Simon ML, Tari I (2011) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13:105–114

    Article  PubMed  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  PubMed  CAS  Google Scholar 

  • Qiu C, Ji W, Guo Y (2011) Effects of high temperature and strong light on chlorophyll fluorescence, the D1 protein, and Deg1 protease in Satsuma mandarin, and the protective role of salicylic acid. Acta Ecol Sinica 31:3802–3810

    CAS  Google Scholar 

  • Radwan DEM, Soltan DM (2012) The negative effects of clethodim in photosynthesis and gas-exchange status of maize plants are ameliorated by salicylic acid pretreatment. Photosynthetica 50:171–179

    Article  CAS  Google Scholar 

  • Raskin I (1992a) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    Article  CAS  Google Scholar 

  • Raskin I (1992b) Salicylate, a new plant hormone. Plant Physiol 99:799–803

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sahu GK, Kar M, Sabat SC (2002) Electron transport activities of isolated thylakoids from wheat plants grown in salicylic acid. Plant Biol 4:321–328

    Article  CAS  Google Scholar 

  • Saruhan N, Saglam A, Kadioglu A (2012) Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiol Plant 34:97–106

    Article  CAS  Google Scholar 

  • Sasheva P, Yordanova R, Janda T, Szalai G, Maslenkova L (2013) Study of primary photosynthetic reactions in winter wheat cultivars after cold hardening and freezing. Effect of salicylic acid. Bulg J Agric Sci 19:45–48

    Google Scholar 

  • Shakirova FM (2007) Role of hormonal system in the manisfestation of growth promoting and anti-stress action of salicylic acid. In: Hayat S, Ahmad A (eds) Salicylic acid, a plant hormone. Springer, Dordrecht, pp 69–89

    Chapter  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Métraux JP, Raskin I (1995) Salicylic acid in rice. Biosynthesis, conjugation, and possible role. Plant Physiol 108:633–639

    PubMed  CAS  PubMed Central  Google Scholar 

  • Singh PK, Gautam S (2013) Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiol Plant 35:2345–2353

    Article  CAS  Google Scholar 

  • Spetea C, Hundal T, Lundin B, Heddad M, Adamska I, Andersson B (2004) Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 101:1409–1414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Szalai G, Janda T (2009) Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci 195:165–171

    Article  CAS  Google Scholar 

  • Szalai G, Horgosi S, Soós V, Majláth I, Balázs E, Janda T (2011) Salicylic acid treatment of pea seeds induces its de novo synthesis. J Plant Physiol 168:213–219

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Krantev A, Yordanova R, Popova LP, Janda T (2013) Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turk J Bot 37:708–714

    CAS  Google Scholar 

  • Tirani MM, Nasibi F, Kalantari KM (2013) Interaction of salicylic acid and ethylene and their effects on some physiological and biochemical parameters in canola plants (Brassica napus L.). Photosynthetica 51:411–418

    Article  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Garab G (2013) The physiological roles and metabolism of ascorbate in chloroplasts. Physiol Plant 148:161–175

    Article  PubMed  Google Scholar 

  • Uzunova AN, Popova LP (2000) Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 38:243–250

    Article  CAS  Google Scholar 

  • Vicent MRS, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosythesis. Mol Plant 3:2–20

    Article  PubMed  CAS  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34

    Article  PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 6:1787–1792

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wildermuth MC (2006) Variations on a theme: synthesis and modification of plant benzoic acids. Curr Opin Plant Biol 9:288–296

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase in required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  PubMed  CAS  Google Scholar 

  • Wu LJ, Zu XF, Wang XT, Sun AG, Zhang J, Wang SX, Chen YH (2013) Comparative proteomic analysis of the effects of salicylic acid and abscisic acid on maize (Zea mays L.) leaves. Plant Mol Biol Rep 31:507–516

    Article  CAS  Google Scholar 

  • Xue LJ, Guo W, Yuan Y, Anino EO, Nyamdari B, Wilson MC, Frost CJ, Chen HY, Babst BA, Harding SA, Tsai CJ (2013) Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populous. Plant Cell 25:2714–2730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yalpani N, Enyedi AJ, León J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376

    Article  CAS  Google Scholar 

  • Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Ito M, Nishida I, Watanabe A (2002) Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsis thaliana. Plant J 29:427–437

    Article  PubMed  CAS  Google Scholar 

  • Yu IC, Parker J, Bent AF (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA 95:7819–7824

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao HJ, Zhao XJ, Ma PF, Wang YX, Hu WW, Li LH, Zhao YD (2011) Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. Acta Ecol Sinica 31:259–263

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Hungarian National Research Fund (OTKA PD 83840; K 108838/108834). Magda Pál is a grantee of János Bolyai scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Janda.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janda, T., Gondor, O.K., Yordanova, R. et al. Salicylic acid and photosynthesis: signalling and effects. Acta Physiol Plant 36, 2537–2546 (2014). https://doi.org/10.1007/s11738-014-1620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1620-y

Keywords

Navigation