Skip to main content
Log in

Interaction of salicylic acid and ethylene and their effects on some physiological and biochemical parameters in canola plants (Brassica napus L.)

  • Published:
Photosynthetica

Abstract

Environmental stresses, such as cold, heat, salinity, and drought, induce ethylene production and oxidative stress and cause damage in plants. On the other hand, studies have shown that salicylic acid (SA) induced resistance to environmental stresses in plants. In this research, the effects of ethylene on chlorophyll (Chl), carotenoid (Car), anthocyanin, flavonoids, ascorbic acid, dehydroascorbic acid, total ascorbate, lipid peroxidation, and ethylene production in leaves of canola pretreated with SA were studied. The plants were grown in pots until they have four leaves. Leaves were sprayed for two days with three different concentrations of SA (0, 0.5, and 1 mM). The plants were treated for three days with three concentrations of ethylene (0, 50, and 100 ppm). At the end of the ethylene treatments, all examined parameters were measured. The results showed that the ethylene treatments induced lipid peroxidation, while SA mitigated this effect. The ethylene treatment lowered significantly Chl and Car contents and anthocyanin accumulation, but SA alleviated these effects. SA induced an increase in ascorbic acid content in canola plants after the ethylene treatments. Therefore, we concluded that SA played an important role in the alleviation of damages caused by stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylic acid

ASA:

ascorbic acid

DHAS:

dehydroascorbic acid

ET50 :

50 ppm ethylene-treated plants

ET100 :

100 ppm ethylene-treated plants

FM:

fresh mass

Car:

carotenoids

Chl:

chlorophyll

GC:

gas chromatography

LSD:

least significant difference

MDA:

malondialdehyde content

SA:

salicylic acid

SAM:

s-adenosylmethionine

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

References

  • Adachi, M., Tsuzuki, E., Shimokawa, K.: Effect of ethylene on de greening of intact radish (Raphanus sativus L.) cotyledons. — Sci. Horti. 65: 1–9, 1996.

    Article  CAS  Google Scholar 

  • Aharoni, N., Anderson, J.D., Lieberman, M.: Production and action of ethylene in senescing leaf discs. — Plant Physiol. 64: 805–809, 1979.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal, S., Sairam, R.K., Srivasta, G.C., Meena, R.C.: Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and SA in wheat genotypes. — Biol. Plant. 49: 541–550, 2005.

    Article  CAS  Google Scholar 

  • Beltrano, J., Montaldi, E., Bartoli C., Carbone, A.: Emission of water stress ethylene in wheat (Triticum aestivumL.) ears: effects of re watering. — Plant Growth Regul. 21: 121–126, 1997.

    Article  CAS  Google Scholar 

  • Borsanio, Valpuesta. V., Botella M.A.: Evidence for a role of SA in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. — Plant Physiol. 126: 1024–1030, 2001.

    Article  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Caren, C.: Ethylene biosynthesis, perception, and response. — J. Plant Growth Regul. 26: 89–91, 2007.

    Article  Google Scholar 

  • Choudhury, S., Panda S.K.: Role of SA in regulating cadmium induced oxidative stress in Oryza sativa L. roots. — Plant Physiol. 30: 95–110, 2004.

    CAS  Google Scholar 

  • Chu, Y.H., Chang C.L., Hsu H.F.: Flavonoid content of several vegetable and their antioxidant activity. — J. Sci. Food Agr. 80: 561–566, 2000.

    Article  CAS  Google Scholar 

  • Costa, M., Lcivello. P.M., Chaves, A.R., Martinez, G.A.: Effect of ethephon and 6-benzylaminopurine on Chl degrading enzymes and peroxidase-linked Chl bleaching during postharvest senescence of broccoli (Brassica oleracea L.) at 20°C. — Postharvest Biol. Technol. 35: 191–199, 2005.

    Article  CAS  Google Scholar 

  • Dat, J.F., Foyer, C.H., Scott, I.M.: Changes in SA and antioxidants during induced thermotolerance in Mustard seedlings. — Plant Physiol. 118: 1455–1461, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Deef H.E.: Influence of SA on Stress tolerance during seed germination of Triticum aestivum and Hordeum vulgare. — Adv. Biol. 1: 40–48, 2007.

    Google Scholar 

  • de Pinto, D., Francis, L., Gara, D.: The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. — Protoplasma 209: 90–95, 1999.

    Article  PubMed  Google Scholar 

  • El-Tayeb, M.A.: Response of barley gains to the interactive effect of salinity and salicylic. — Plant Growth Regul. 45: 215–225, 2005.

    Article  CAS  Google Scholar 

  • Ganesan V., Thomas G.: SA response in rice: influence of SA on H2O2 accumulation and oxidative stress. — Plant Sci. 160: 1095–1106, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Guo, V., Ecker, J.R.: The ethylene signaling pathway: new insights. — Cur. Opinion Plant Biol. 7: 40–49, 2004.

    Article  CAS  Google Scholar 

  • Harper, J.P., Balke N.E.: Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. — Plant Physiol. 68: 1349–1353, 1981.

    Article  CAS  PubMed  Google Scholar 

  • Heath, R.L., Packer. L.: Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Horváth, E., Szalai, G., Janda, T.: Induction of abiotic stress tolerance by SA signaling. — J. Plant Growth Regul. 26: 290–300, 2007a.

    Article  Google Scholar 

  • Horváth, E., Pál, M., Szalai G., Páldi, E.: Exogenous 4-hydroxybenzoic acid and SA modulate the effect of short-term drought and freezing stress on wheat plants. — Biol. Plant. 51: 480–487, 2007b.

    Article  Google Scholar 

  • Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants. — Plant Physiol. 47: 377–403, 1996.

    CAS  Google Scholar 

  • Inze, D., Montagu, M.V.: Oxidative Stress in Plants. — Tylor & Francis Group Publ., London — New York 2002.

    Google Scholar 

  • Jacob-Wilk, D., Holland, D.: Chlorophyll breakdown by chlorophyllase: isolation and function expression of Chlase 1 gene from ethylene-treated Citrus fruit and its regulation during development. — Plant J. 20: 653–661, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Janda, T., Horváth, E., Szalai, G.: Role of salicylic acid in the induction of abiotic stress tolerance. — In: Hayat, S., Ahmad A. (ed.): Salicylic Acid: a Plant Hormone. Pp. 91–150. Springer, Dordrecht 2007.

    Chapter  Google Scholar 

  • Kalantari, K. M., Smith, R.A., Hall, M.A.: The effect of water stress on 1-(malonylamino)cyclopropane-1-carboxylic acid concentration in plant tissues. — Plant Growth Regul. 31: 183–193, 2000.

    Article  CAS  Google Scholar 

  • Kang, G., Wang, C., Sun, G., Wang, Z.: SA changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. — Environ. Exp. Bot. 50: 9–15, 1973.

    Article  Google Scholar 

  • Kao, C.H., Yang, S.F.: Role of ethylene in the senescence of detached rice leaves. — Plant Physiol. 73: 881–885, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Kendrick, M.D., Chang, C.: Ethylene signaling: new levels of complexity and regulation. — Curr. Opin. Plant Biol. 11: 479–485, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Keutgen, A.J., Pawelizik, E.: Quality and nutritional value of strawberry fruit under long term salt stress. — Food Chem. 107: 1413–1420, 2008.

    Article  CAS  Google Scholar 

  • Koyro, H.W.: Effect of salinity on growth, photosynthesis, water relations and solute composition of potential cash crop halophyte Plantago coronopus (L.). — Environ. Exp. Bot. 56: 136–149, 2006.

    Article  CAS  Google Scholar 

  • Leslie, C.A., Romani, R.J.: Inhibition of ethylene biosynthesis by salicylic acid. — Plant Physiol. 88: 833–837, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. — Meth. Enzym. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Loggini, B., Scartazza, A., Brugonli, E., Navari-izzo, F.: Ant oxidative defense system, pigment composition, and photosynthesis efficiency in two wheat cultivars subjected to drought. — Plant Physiol. 119: 1091–1099, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Meidner, H.: Long Ashtone nutrition solution.— In: Reiss, C. (ed.): Class Experiments in Plant Physiology. Pp. 156–156. Prentice Hall Publ., London 1994.

    Google Scholar 

  • Meirs, S., Philosophhadas, S., Aharoni, N.: Ethylene-increased accumulation of fluorescent lipid-peroxidation products detected during senescence of Parsley by a newly developed method. — J. Amer. Soc. Hort. Sci. 117: 128–132, 1992.

    Google Scholar 

  • Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J.: SA alleviates the Cadmium Toxicity in Barley seedlings. — Plant. Physiol.: 132: 272–281, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Németh, M., Janda, T., Horváth, et al.: Exogenous SA increase polyamine content but may decrease drought tolerance in maize. — Plant Sci. 162: 569–574, 2002.

    Article  Google Scholar 

  • Nilsson, T.: Effects of ethylene and 1-MCP on ripening and senescence of European seedless cucumbers. — Postharvest Biol. Technol. 36: 113–125, 2005.

    Article  CAS  Google Scholar 

  • Pech, J., Bouzayen, M., Latche, A.: Ethylene biosynthesis. — In: Davies, P.J. (ed.): Plant Hormones. Biosynthesis, Signal Transduction, Action. Pp 115–136. Springer, Dordrecht 2004

    Google Scholar 

  • Popova, L., Ananieva, E., Hristova, V. et al.: Salicylic acid-and metyl jasmonate-induced protection on photosynthesis to paraquat oxidative stress. — Bul. J. Plant Physiol. 30: 133–152, 2003.

    Google Scholar 

  • Popova, L., Pancheva, T., Uzunova, A.: Salicylic acid: Properties, biosynthesis and physiological role. — Plant Physiol. 23: 85–93, 1997.

    CAS  Google Scholar 

  • Raskin, I.: Role of SA in plants. — Ann. Rev. Plant Physiol. Plant Mol. Biol. 43: 439–446, 1992.

    Article  CAS  Google Scholar 

  • Sakabutdinova A.R., Fatkhutdinova M.V., Bezrukova M.V., Shakirova, F.M.: SA prevents the damaging factors on wheat plants. — Bul. J. Plant Physiol. 30: 314–319, 2003.

    Google Scholar 

  • Sakihama, Y., Cohen, M.F., Grace, S.C., Yamasaki, H.: Plant phenolic antioxidant and prooxidant activities: phenolicsinduced oxidative damage mediated by metals in plants. — Toxicology 177: 67–80, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Senaranta, T., Touchell, D., Bummol, E., Dixon, K.: Acetyl aslicylic (aspirin) and SA induce multiple stress tolerance in bean and tomato plants. — Plant Growth Regul. 30: 157–161, 2002.

    Google Scholar 

  • Shinozaki, K., Yamaguchi-shinozaki, K., Liu, Q. et al.: Molecular responses to drought stress in plants: regulation of gene expression and signal transduction. — In: Smallwood, M.F., Calvert, C.M., Bowles, D.J.: Plant Responses to Environmental Stress. Pp133–180. Oxford BIOS Scientific Publ., Oxford 1999.

    Google Scholar 

  • Singh, B., Usha, K.: SA induced physiological and biochemical changes in wheat seedlings under water stress. — Plant Growth Regul. 39: 137–141, 2003.

    Article  CAS  Google Scholar 

  • Srivastava, M.K., Dwivedi, U.N.: Delayed ripening of banana fruit by salicylic acid. — Plant Sci. 158: 87–96, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Trebitsh, T., Goldschmidt, E., Riov, J.: Ethylene induces de novo synthesis of Chlase, a Chl degrading enzyme, in Citrus fruit peel. — Proc. Nat. Acad. Sci. USA 9: 9441–9445, 1993.

    Article  Google Scholar 

  • Vera, P., Conejero, V.: Effect of ethephon on protein degradation and the accumulation of pathogenesis-related (PR) proteins in tomato leaf discs. — Plant Physiol. 92: 227–233, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Wahid, A., Ghazanfar, A.: Possible involvement of some secondary metabolites in salt tolerance of sugarcane. — Plant Physiol. 163: 723–30, 2006.

    Article  CAS  Google Scholar 

  • Wagner, G.J.: Content and vacuole/extra vacuole distribution of neutral sugars, free amino acids, and anthocyanins in protoplast. — Plant Physiol. 64: 88–93, 1979.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K., Li, H., Ecker, J.: Ethylene biosynthesis and signaling networks. — Plant Cell 14: 131–151, 2002.

    Google Scholar 

  • Wen, P.F., Chen, J.Y., Kong, W.F. et al.: Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. — Plant Sci. 169: 928–934, 2005.

    Article  CAS  Google Scholar 

  • Yazdanpanah, S., Baghizadeh, A., Abbassi, F.: The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. — Afr. J. Agr. 6: 798–807, 2011.

    Google Scholar 

  • Zafar, A., Basra, S., Hassan, M., et al.: Mitigation of drought stress in maize by natural and synthetic growth promoters. — J. Agr. Social Sci. 7: 56–62, 2011.

    Google Scholar 

  • Zhang, Y., Chen, K., Zhang, Sh., Fergusen, I.: The role of SA in postharvest ripening of kiwifruit. — Postharvest Biol. Technol. 28: 67–74, 2003.

    Article  Google Scholar 

  • Zhu, J.K.: Cell signaling under salt, water and cold stresses. — Curr. Opin. Plant Biol. 4: 401–406, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nasibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tirani, M.M., Nasibi, F. & Kalantari, K.M. Interaction of salicylic acid and ethylene and their effects on some physiological and biochemical parameters in canola plants (Brassica napus L.). Photosynthetica 51, 411–418 (2013). https://doi.org/10.1007/s11099-013-0041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0041-2

Additional key words

Navigation