Skip to main content
Log in

Somatic embryogenesis of holm oak (Quercus ilex L.): ethylene production and polyamine content

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The production of ethylene and the endogenous content of polyamines (PAs) have been recorded during the early development, maturation and germination of holm oak (Quercus ilex L.) somatic embryos. Ethylene production was high in embryogenic callus, immature somatic embryos and in explants showing secondary embryogenesis, while it was lower in mature and germinating somatic embryos. A higher ethylene production was also associated to the process of secondary embryogenesis. The exogenous application of 1-amino-1-cyclohexane carboxylic acid was not significantly effective on the production of ethylene by holm oak somatic embryos. Total PAs were more abundant in embryogenic callus and in both somatic and zygotic immature embryos, decreasing later on in the mature and germination phases. Immature somatic embryos of holm oak and immature zygotic embryos contain high levels of spermidine (Spd), which decreased during maturation and germination. Spermine (Spm) concentration was lower than that of Spd. Spm was more abundant in embryogenic callus and immature zygotic embryos than in mature embryos. Ethylene production did not seem to interfere with PA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACC:

1-Amino-1-cyclohexane carboxylic acid

FW:

Fresh weight

MS:

Murashige and Skoog medium

PAs:

Polyamines

PGR:

Plant growth regulators

Put:

Putrescine

SAM:

S-adenosylmethionine

SH:

Schenk and Hildebrandt medium

Spd:

Spermidine

Spm:

Spermine

References

  • Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 1. McMillan, New York, pp 82–123

    Google Scholar 

  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. In Vitro Cell Dev Biol Plant 44:384–395. doi:10.1007/s11627-008-9176-4

    Article  CAS  Google Scholar 

  • Berros B, Alvarez C, Rodriguez R (1997) Effect of putrescine synthesis inhibitors on somatic embryogenesis in hazelnut. Angewandte Botanik 71:90–93

    CAS  Google Scholar 

  • Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125:2139–2153

    Article  PubMed  CAS  Google Scholar 

  • Bueno MA, Astorga R, Manzanera JA (1992) Plant regeneration through somatic embryogenesis in Quercus suber. Physiol Plant 85:30–34

    Article  Google Scholar 

  • Bueno MA, Gomez A, Sepulveda F, Segui JM, Testillano PS, Manzanera JA, Risueño MC (2003) Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long term anther culture. J Plant Physiol 160:953–960

    Article  PubMed  CAS  Google Scholar 

  • Cvikrova M, Malá J, Eder J, Hrubcová M, Vágner M (1998) Abscisic acid, polyamines and phenolic acids in sessile oak somatic embryos in relation to their conversion potential. Plant Physiol Biochem 36(3):247–255

    Article  CAS  Google Scholar 

  • Cvikrova M, Binarová P, Cenklová V, Eder J, Machácková I (1999) Reinitiation of cell division and polyamine and aromatic monoamine levels in alfalfa explants during the induction of somatic embryogenesis. Physiol Plant 105:330–337

    Article  CAS  Google Scholar 

  • Dias LLC, Santa-Catarina C, Ribeiro DM, Barros RS, Floh EIS, Otoni WC (2009) Ethylene and polyamine production patterns during in vitro shoot organogenesis of two passion fruit species as affected by polyamines and their inhibitor. Plant Cell Tissue Organ Cult 99:199–208. doi:10.1007/s11240-009-9594-y

    Article  CAS  Google Scholar 

  • Féraud-Keller C, Espagnac H (1989) Conditions for the appearance of somatic embryogenesis on callus from leaf tissue cultures of holm oak (Quercus ilex). Can J Bot 67:1066–1070 (in French)

    Google Scholar 

  • Fraga MF, Rodriguez R, Cañal MJ (2003) Reinvigoration of Pinus radiata is associated with partial recovery of juvenile-like polyamine concentrations. Tree Physiol 23:205–209

    PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspensions cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martin G, González-Benito ME, Manzanera JA (2001) Quercus suber L. somatic embryo germination and plant conversion: pretreatments and germination conditions. In Vitro Cell Dev Biol Plant 37:190–198

    Article  CAS  Google Scholar 

  • García-Martin G, Manzanera JA, González-Benito ME (2005) Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tissue Organ Cult 80(2):171–177

    Article  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka T, Sawabe E, Azuma T, Uchida N, Yasuda T (1995) The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora. Plant Sci 107:199–204

    Article  CAS  Google Scholar 

  • Joy RW IV, Kumar PP, Thorpe TA (1991) Long-term storage of somatic embryogenic white spruce tissue at ambient temperature. Plant Cell Tissue Organ Cult 25:53–60

    Article  Google Scholar 

  • Kepczynska E, Rudus I, Kepczynski J (2009) Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L. Plant Growth Regul 59:63–73. doi:10.1007/s10725-009-9388-6

    Article  CAS  Google Scholar 

  • Kepczynski J, Mckersie BD, Brown DCW (1992) Requirement of ethylene for growth of callus and somatic embryogenesis in Medicago sativa L. J Exp Bot 43:1199–1202

    Article  CAS  Google Scholar 

  • Kuklin AI, Conger BV (1995) Enhancement of somatic embryogenesis in orchardgrass leaf cultures by epinephrine. Plant Cell Rep 14:641–644

    Article  CAS  Google Scholar 

  • Kumar PP, Reid DM, Thorpe TA (1987) The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiol Plant 69:244–252

    Article  CAS  Google Scholar 

  • Kumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130

    Article  Google Scholar 

  • Mauri PV, Manzanera JA (2003) Induction, maturation and germination of holm oak (Quercus ilex L.) somatic embryos. Plant Cell Tissue Organ Cult 74:229–235

    Article  CAS  Google Scholar 

  • Mauri PV, Manzanera JA (2004) Effect of abscisic acid and stratification on somatic embryo maturation and germination of holm oak (Quercus ilex L.). In Vitro Cell Dev Biol Plant 40:495–498

    Article  CAS  Google Scholar 

  • Minocha R, Kvaalen H, Minocha SC, Long S (1993) Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens). Tree Physiol 13:365–377

    PubMed  CAS  Google Scholar 

  • Minocha R, Smith DR, Reeves C, Steele KD, Minocha SC (1999) Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol Plant 105:155–164

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Peck SC, Kende H (1998) Differential regulation of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene. Plant Mol Biol 38:977–982

    Article  PubMed  CAS  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1990) Inhibition of ethylene production and stimulation of carrot somatic embryogenesis by salicylic acid. Biol Plant 32:273–276

    Article  CAS  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1994) Role of ethylene on induction and expression of carrot somatic embryogenesis: relationship with polyamine metabolism. Plant Sci 103:223–229

    Article  CAS  Google Scholar 

  • Santanen A, Simola LK (1997) Polyamine metabolism in developing somatic embryos in tissue cultures of Picea abies. Acta Hortic 447:113–117

    CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Sridevi V, Giridhar P, Ravishankar GA (2009) Endogenous polyamine profiles in different tissues of Coffea sp., and their levels during the ontogeny of fruits. Acta Physiol Plant 31:757–764. doi:10.1007/s11738-009-0289-0

    Article  CAS  Google Scholar 

  • Tiburcio AF, Campos JL, Figueras X, Besford RT (1993) Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul 12:331–340

    Article  CAS  Google Scholar 

  • Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Walter HJ, Geuns JM (1987) High speed HPLC analysis of polyamines in plant tissues. Plant Physiol 83:232–234

    Article  PubMed  CAS  Google Scholar 

  • Wang CY (1987) Changes of polyamines and ethylene in cucumber seedlings in response to chilling stress. Physiol Plant 69:253–257

    Article  CAS  Google Scholar 

  • Yadav JS, Rajam MV (1997) Spatial distribution of free and conjugated polyamines in leaves of Solanum melongena L. associated with differential morphogenetic capacity: efficient somatic embryogenesis with putrescine. J Exp Bot 48:1537–1545

    CAS  Google Scholar 

  • Yadav JS, Rajam MV (1998) Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in egg-plant. Plant Physiol 116:617–625

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Institute of Agronomic Research (INIA), project SC94-129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Manzanera.

Additional information

Communicated by S. Werbrouck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauri, P.V., Manzanera, J.A. Somatic embryogenesis of holm oak (Quercus ilex L.): ethylene production and polyamine content. Acta Physiol Plant 33, 717–723 (2011). https://doi.org/10.1007/s11738-010-0596-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0596-5

Keywords

Navigation