Skip to main content
Log in

Endogenous polyamine profiles in different tissues of Coffea sp., and their levels during the ontogeny of fruits

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Polyamines are essential compounds for growth and development in plants. An attempt has been made to find out the endogenous polyamine profiles in various parts and during the ontogeny of fruit formation of two commercially important Coffea species viz., arabica and canephora. Putrescine (Put), spermine (Spm) and spermidine (Spd) are the predominant polyamines during the ontogeny of fruit and their level increased with the advancement of fruit development. However, in the initial stages of flower and fruit development Spm levels were found to be decreased. Elevated levels of major polyamines Put, Spd, and Spm were observed in zygotic embryos than in somatic embryos. Along with this cadavarine (Cad) and other biogenic amines viz., tyramine (Tyr) and tryptamine (Try) were also found during the ontogeny of fruit in C. canephora. In this study the enodogenous polyamine profiles in coffee tissues and beans have been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

BA:

N6-benzyladenine

Cad:

Cadavarine

DFMA:

α-dl-Difluromethyl arginine

DFMO:

α-dl-Difluromethyl ornithine

IAA:

Indole-3-acetic acid

MS:

Murashige and Skoog medium

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

Try:

Tryptamine

Tyr:

Tyramine

CGA:

Chlorogenic acid

References

  • Bagni N (1999) Roast effects on coffee free and conjugated polyamines. Amino Acids 17:57

    Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34. doi:10.1023/A:1015064227278

    Article  CAS  Google Scholar 

  • Bais HP, Sudha GS, Ravishankar GA (2000) Putrescine and AgNo3 influences shoot multiplication, in vitro flowering and endogenous titres of polyamines in Cichorium intybus L. cv. Lucknow local. J Plant Growth Regul 19:238–248

    PubMed  CAS  Google Scholar 

  • Bezold TN, Loy JB, Minocha SC (2003) Changes in the cellular content of polyamines in different tissues of seed and fruit of a normal and a hull-less seed variety of pumpkin during development. Plant Sci 164:743–752. doi:10.1016/S0168-9452(03)00035-9

    Article  CAS  Google Scholar 

  • Biasi R, Costa G, Bagni N (1991) Polyamine metabolism as related to fruit set and growth. Plant Physiol Biochem 29:497–506

    CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125. doi:10.1016/S0168-9452(98)00218-0

    Article  CAS  Google Scholar 

  • Carbonell J, Navarro JL (1989) Correlation of spermidine levels with ovary senescence and with fruit set and development in Pisum sativum L. Planta 178:482–487. doi:10.1007/BF00963818

    Article  CAS  Google Scholar 

  • Casal S, Mendes E, Oliveira MBPP, Ferreoran MA (2005) Roast effects on coffee free and conjugated polyamines. Electron J Environ Agric Food Chem 4(5):1063–1068

    CAS  Google Scholar 

  • Casas JL, Acosta M, Delrio JA, Sabater S (1990) Ethylene evolution during ripening of detached tomato fruit: its relation with polyamine metabolism. Plant Growth Regul 9:89–96. doi:10.1007/BF00027436

    Article  CAS  Google Scholar 

  • Cirilo MPG, Coelho AFS, Araujo CM, Goncalves FRB, Nogueira FD, Gloria MBA (2003) Profile and level of bioactive amines in green and roasted coffee. Food Chem 82:397–402. doi:10.1016/S0308-8146(02)00560-5

    Article  CAS  Google Scholar 

  • Clifford MN (2000) Chlorogenic acids and other cinnamates—Nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80:1033–1042. doi:10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T

    Article  CAS  Google Scholar 

  • Costa G, Bagni N (1983) Effects of polyamines on fruit-set of apple. HortScience 18:59–61

    CAS  Google Scholar 

  • Dai YR, Wang J (1987) Relation of polyamine titer to photoperiodic induction of flowering in Pharbitis nil. Plant Sci 51:135–139. doi:10.1016/0168-9452(87)90184-1

    Article  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    CAS  Google Scholar 

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706. doi:10.1104/pp.69.3.701

    Article  PubMed  CAS  Google Scholar 

  • Galston AW (1983) Polyamines as modulators of plant development. BioSci 33:382–388

    Google Scholar 

  • Galston AW, Kaur-Sawhrey R (1990) Polyamines in plant physiology. Plant Physiol 94:406–410. doi:10.1104/pp.94.2.406

    Google Scholar 

  • Galston AW, Kaur-Sawhney R, Altabella T, Tiburcio AF (1997) Plant Polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    CAS  Google Scholar 

  • Giridhar P, Reddy SM (1998) The effect of some polyamine biosynthesis inhibitors on mycelial growth and mycotoxins production by Aspergillus terreus. Natl Acad Sci Lett India 21:5–8

    CAS  Google Scholar 

  • Giridhar P, Reddy SM, Rajam MV (1997) Control of Penicillium citrinum growth and citrinin production by some polyamine biosynthesis inhibitors. Indian Phytopathol Soc 50(1):33–36

    CAS  Google Scholar 

  • Giridhar P, Rajam MV, Reddy SM (1999) Effect of polyamine biosynthesis inhibitors on aflatoxin B1 and ochratoxin A production. Adv Plant Sci India 12(1):41–44

    Google Scholar 

  • Giridhar P, Indu EP, Ravishankar GA, Chandrasekar A (2004a) Influence of triacontanol on somatic embryogenesis in Coffea arabica L. and Coffea canephora P.ex.Fr. In Vitro Cell Dev Biol Plant 40:200–203

    Article  Google Scholar 

  • Giridhar P, Indu EP, Kumar V, Chandrashekar A, Ravishankar GA (2004b) Direct somatic embryogenesis from Coffea arabica L. and Coffea canephora P. Ex. Fr. under the influence of ethylene action inhibitor-silver nitrate. Acta Physiol Plant 26:299–305. doi:10.1007/s11738-004-0020-0

    Article  CAS  Google Scholar 

  • Hamasaki N, Galston AW (1990) The polyamines of Xanthium strumarium and their response to photoperiod. Photochem Photobiol 52:181–186. doi:10.1111/j.1751-1097.1990.tb01772.x

    Article  PubMed  CAS  Google Scholar 

  • Huang CK, Chang BS, Wang KC, Her SJ, Chen TW, Chen YA, Cho CL, Liao LJ, Huang KL, Chen WS, Liu ZH (2004) Changes in polyamine pattern are involved in floral initiation and development in (Polianthes tuberosa). J Plant Physiol 161:709–713. doi:10.1078/0176-1617-01256

    Article  PubMed  CAS  Google Scholar 

  • Mc Kallio A, Cann O, Bey P (1981) dl-α- (difluoro-methyl) ornithine: a potent enzyme-activated inhibitor of bacterial arginine decarboxylase. Biochemistry 20:3163–3166. doi:10.1021/bi00514a027

    Article  Google Scholar 

  • Kumar V, Giridhar P, Chandrasekar A, Ravishankar GA (2008) Polyamines influence morphogenesis and caffeine biosynthesis in in vitro cultures of Coffea canephora P. ex. Fr. Acta Physiol Plant 30:217–223. doi:10.1007/s11738-007-0110-x

    Article  CAS  Google Scholar 

  • Martin-Tanguy J (1997) Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol Plant 100:675–688. doi:10.1111/j.1399-3054.1997.tb03074.x

    Article  CAS  Google Scholar 

  • Meijer EGM, Simmonds J (1988) Polyamine levels in relation to growth and somatic embryogenic in tissue culture of Medicago sativa L. J Exp Bot 203:787–794. doi:10.1093/jxb/39.6.787

    Article  Google Scholar 

  • Montague MJ, Armstrong TA, Jarworski EG (1979) Polyamine metabolism in embryogenic cells of Daucus carota 11, changes in arginine decarboxylase activity. Plant Physiol 63:341–345. doi:10.1104/pp.63.2.341

    Article  PubMed  CAS  Google Scholar 

  • Murashige M, Skoog TA (1962) Revised medium for rapid growth and bioassay of tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nathan R, Altman A, Monselise SP (1984) Changes in activity of polyamine biosynthetic enzymes and in polyamine contents in developing fruit tissues of ‘Murcott’ mandarin. Sci Hort 22:359–364

    Article  CAS  Google Scholar 

  • de Dios P, Matilla AJ, Gallardo M (2006) Flower fertilization and fruit development prompt changes in free polyamines and ethylene in damson plum (Prunus insitica L.). J Plant Physiol 16:386–397

    Google Scholar 

  • Pedroso MC, Primikirios N, Roubelakis-Angelakis KA, Pais MS (1997) Free and conjugated polyamines in embryogenic and non-embryogenic leaf regions of camellia leaves before and during direct somatic embryogenesis. Physiol Plant 101:213–219. doi:10.1111/j.1399-3054.1997.tb01839.x

    Article  CAS  Google Scholar 

  • Saftner RA, Baldi B (1990) Polyamine levels and tomato fruit development: possible interaction with ethylene. Plant Physiol 92:547–550. doi:10.1104/pp.92.2.547

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki S, Ogata T, Horiuchi S (2000) Endogenous polyamines in the pericarp and seed of the grape berry during development and ripening. Sci Hort 83:33–41. doi:10.1016/S0304-4238(99)00064-3

    Article  CAS  Google Scholar 

  • Sridevi V, Giridhar P (2008) Recent trends in coffee biotechnology towards quality improvement—a review. Indian J Bot Res 4(1):5–12

    Google Scholar 

  • Tarenghi E, Martin-Tanguy J (1995) Polyamine floral induction and floral development of strawberry (Fragera ananassa Duch). Plant Growth Regul 17:157–165. doi:10.1007/BF00024176

    Article  CAS  Google Scholar 

  • Walters DR (2003) Polyamines and plant disease. Phytochemistry 64:97–107. doi:10.1016/S0031-9422(03)00329-7

    Article  PubMed  CAS  Google Scholar 

  • Yadav JS, Rajam MV (1997) Spatial distribution of free and conjugated polyamines in leaves of Solanum melongena associated with differential morpho genetics capacity efficient somatic embryogenesis with putrescine. J Exp Bot 46:1537–1545

    Google Scholar 

  • Yasuda T, Fujii Y, Yamaguchi T (1985) Embryogenic callus induction from Coffea arabica leaf explants by benzyladenine. Plant Cell Physiol 26:595–597

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Central Coffee Research Institute (CCRI), Balehonnur, Karnataka State, India for providing the Coffea seed samples for our work and to Department of Biotechnology, Government of India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvatam Giridhar.

Additional information

Communicated by B. Barna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridevi, V., Giridhar, P. & Ravishankar, G.A. Endogenous polyamine profiles in different tissues of Coffea sp., and their levels during the ontogeny of fruits. Acta Physiol Plant 31, 757–764 (2009). https://doi.org/10.1007/s11738-009-0289-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0289-0

Keywords

Navigation