Skip to main content
Log in

Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

In this study, average-interpolating radial basis functions (RBFs) are successfully integrated with central high-resolution schemes to achieve a higher-order central method. This proposed method is used for simulation of generalized coupled thermoelasticity problems including shock (singular) waves in their solutions. The thermoelasticity problems include the LS (systems with one relaxation parameter) and GN (systems without energy dissipation) theories with constant and variable coefficients. In the central high resolution formulation, RBFs lead to a reconstruction with the optimum recovery with minimized roughness on each cell: this is essential for oscillation-free reconstructions. To guarantee monotonic reconstructions at cell-edges, the nonlinear scaling limiters are used. Such reconstructions, finally, lead to the total variation bounded (TVB) feature. As RBFs work satisfactory on non-uniform cells/grids, the proposed central scheme can handle adapted cells/grids. To have cost effective and accurate simulations, the multiresolution–based grid adaptation approach is then integrated with the RBF-based central scheme. Effects of condition numbers of RBFs, computational complexity and cost of the proposed scheme are studied. Finally, different 1-D coupled thermoelasticity benchmarks are presented. There, performance of the adaptive RBF-based formulation is compared with that of the adaptive Kurganov-Tadmor (KT) second-order central high-resolution scheme with the total variation diminishing (TVD) property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandrasekharaiah D S. Thermoelasticity with second sound: a review. Applied Mechanics Reviews, 1986, 39(3): 355–376

    Article  MATH  Google Scholar 

  2. Mallik S H, Kanoria M. Generalized thermoelastic functionally graded solid with a periodically varying heat source. International Journal of Solids and Structures, 2007, 44(22–23): 7633–7645

    Article  MATH  Google Scholar 

  3. Tamma K K, Namburu R R. Computational approaches with applications to non-classical and classical thermomechanical problems. Applied Mechanics Reviews, 1997, 50(9): 514–551

    Article  Google Scholar 

  4. Mitra K, Kumar S, Vedevarz A, Moallemi M. Experimental evidence of hyperbolic heat conduction in processed meat. Journal of Heat Transfer, 1995, 117(3): 568–573

    Article  Google Scholar 

  5. Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299–309

    Article  MATH  Google Scholar 

  6. Green A, Lindsay K. Thermoelasticity. Journal of Elasticity, 1972, 2(1): 1–7

    Article  MATH  Google Scholar 

  7. Green A, Naghdi P. Thermoelasticity without energy dissipation. Journal of Elasticity, 1993, 31(3): 189–208

    Article  MathSciNet  MATH  Google Scholar 

  8. Green A E, Naghdi P M. A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society of London. Series A, 1991, 432(1885): 171–194

    Article  MathSciNet  MATH  Google Scholar 

  9. Green A, Naghdi P. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 1992, 15(2): 253–264

    Article  MathSciNet  Google Scholar 

  10. Das B. Problems and Solutions in Thermoelasticity and Magnetothermoelasticity. Springer, 2017

    Google Scholar 

  11. Povstenko Y. Fractional Cattaneo-type equations and generalized thermoelasticity. Journal of Thermal Stresses, 2011, 34(2): 97–114

    Article  Google Scholar 

  12. Povstenko Y. Fractional thermoelasticity. In: Hetnarski R B, ed. Encyclopedia of Thermal Stresses. Springer, 2014, 1778–1787

    Chapter  Google Scholar 

  13. Ezzat M A, El-Karamany A S, Samaan A A. The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation. Applied Mathematics and Computation, 2004, 147(1): 169–189

    Article  MathSciNet  MATH  Google Scholar 

  14. Youssef H M. Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity. Applied Mathematics and Mechanics, 2005, 26(4): 470–475

    Article  MATH  Google Scholar 

  15. Aouadi M. Generalized thermo-piezoelectric problems with temperature-dependent properties. International Journal of Solids and Structures, 2006, 43(21): 6347–6358

    Article  MATH  Google Scholar 

  16. Othman M I, Kumar R. Reflection of magneto-thermoelasticity waves with temperature dependent properties in generalized thermoelasticity. International Communications in Heat and Mass Transfer, 2009, 36(5): 513–520

    Article  Google Scholar 

  17. Allam M N, Elsibai K A, Abouelregal A E. Magneto-thermoelasticity for an infinite body with a spherical cavity and variable material properties without energy dissipation. International Journal of Solids and Structures, 2010, 47(20): 2631–2638

    Article  MATH  Google Scholar 

  18. Abbas I A. Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties. Computers & Mathematics with Applications (Oxford, England), 2014, 68(12): 2036–2056

    Article  MathSciNet  MATH  Google Scholar 

  19. Xiong Q L, Tian X G. Transient magneto-thermoelastic response for a semi-infinite body with voids and variable material properties during thermal shock. International Journal of Applied Mechanics, 2011, 3(4): 881–902

    Article  Google Scholar 

  20. He T, Shi S. Effect of temperature-dependent properties on thermoelastic problems with thermal relaxations. Chinese Journal of Solid Mechanics, 2014, 27: 412–419

    Google Scholar 

  21. Sherief H, Abd El-Latief A M. Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. International Journal of Mechanical Sciences, 2013, 74: 185–189

    Article  Google Scholar 

  22. Wang Y, Xue J. Asymptotic analysis of thermoelastic response in a functionally graded solid based on LS theory. International Journal of Material Science, 2016, 6(1): 35–40

    Article  Google Scholar 

  23. Wang Y, Liu D, Wang Q, Zhou J. Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock. Journal of Thermal Stresses, 2016, 39(4): 460–473

    Article  Google Scholar 

  24. Wang Y, Liu D, Wang Q, Zhou J. Asymptotic solutions for generalized thermoelasticity with variable thermal material properties. Archives of Mechanics, 2016, 68: 181–202

    MathSciNet  MATH  Google Scholar 

  25. Liang W, Huang S, Tan W, Wang Y. Asymptotic approach to transient thermal shock problem with variable material properties. Mechanics of Advanced Materials and Structures, 2017: 1–9

    Google Scholar 

  26. Youssef H, El-Bary A. Thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity. Math Probl Eng, 2006, 2006: 1–14

    Article  MathSciNet  MATH  Google Scholar 

  27. Yousefi H, Noorzad A, Farjoodi J, Vahidi M. Multiresolutionbased adaptive simulation of wave equation. Applied Mathematics & Information Sciences, 2012, 6: 47S–58S

    MATH  Google Scholar 

  28. Yousefi H, Ghorashi S S, Rabczuk T. Directly simulation of second order hyperbolic systems in second order form via the regularization concept. Communications in Computational Physics, 2016, 20 (01): 86–135

    Article  MathSciNet  MATH  Google Scholar 

  29. Latifi M, Kharazi M, Ovesy H. Nonlinear dynamic response of symmetric laminated composite beams under combined in-plane and lateral loadings using full layerwise theory. Thin-walled Structures, 2016, 104: 62–70

    Article  Google Scholar 

  30. Latifi M, Farhatnia F, Kadkhodaei M. Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion. European Journal of Mechanics. A, Solids, 2013, 41: 16–27

    Article  MathSciNet  MATH  Google Scholar 

  31. Latifi M, Kharazi M, Ovesy H. Effect of integral viscoelastic core on the nonlinear dynamic behaviour of composite sandwich beams with rectangular cross sections. International Journal of Mechanical Sciences, 2017, 123: 141–150

    Article  Google Scholar 

  32. Yousefi H, Noorzad A, Farjoodi J. Simulating 2D waves propagation in elastic solid media using wavelet based adaptive method. Journal of Scientific Computing, 2010, 42(3): 404–425

    Article  MathSciNet  MATH  Google Scholar 

  33. Godunov S K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik, 1959, 89: 271–306

    MathSciNet  MATH  Google Scholar 

  34. Harten A, Engquist B, Osher S, Chakravarthy S R. Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 1987, 71(2): 231–303

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994, 115(1): 200–212

    Article  MathSciNet  MATH  Google Scholar 

  36. LeVeque R J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002

    Google Scholar 

  37. Kurganov A, Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. Journal of Computational Physics, 2000, 160(1): 241–282

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu X D, Tadmor E. Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer Math, 1998, 79(3): 397–425

    Article  MathSciNet  MATH  Google Scholar 

  39. Van Leer B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics, 1979, 32(1): 101–136

    MATH  Google Scholar 

  40. Levy D, Puppo G, Russo G. Central WENO schemes for hyperbolic systems of conservation laws. Modélisation Mathématique et Analyse Numérique, 1999, 33(3): 547–571

    MathSciNet  MATH  Google Scholar 

  41. Levy D, Puppo G, Russo G. Compact central WENO schemes for multidimensional conservation laws. SIAM Journal on Scientific Computing, 2000, 22(2): 656–672

    Article  MathSciNet  MATH  Google Scholar 

  42. Dehghan M, Jazlanian R. On the total variation of a third-order semi-discrete central scheme for 1D conservation laws. Journal of Vibration and Control, 2011, 17(9): 1348–1358

    Article  MathSciNet  MATH  Google Scholar 

  43. Levy A, Ben-Dor G, Sorek S. Numerical investigation of the propagation of shock waves in rigid porous materials: development of the computer code and comparison with experimental results. Journal of Fluid Mechanics, 1996, 324: 163–179

    Article  MATH  Google Scholar 

  44. Levy A, Ben-Dor G, Sorek S. Numerical investigation of the propagation of shock waves in rigid porous materials: flow field behavior and parametric study. Shock Waves, 1998, 8(3): 127–137

    Article  MATH  Google Scholar 

  45. Heuzé T. Lax-Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic-plastic solids. Journal of Computational Physics, 2017, 346: 369–388

    Article  MathSciNet  MATH  Google Scholar 

  46. Berezovski A, Maugin G. Simulation of thermoelastic wave propagation by means of a composite wave-propagation algorithm. Journal of Computational Physics, 2001, 168(1): 249–264

    Article  MathSciNet  MATH  Google Scholar 

  47. Berezovski A, Maugin G. Application of wave-propagation algorithm to two-dimensional thermoelastic wave propagation in inhomogeneous media. In: Toro E F, ed. Godunov Methods: Theory and Applications. Boston: Springer Science & Business Media, 2001, 109–116

    Chapter  Google Scholar 

  48. Dehghan M, Abbaszadeh M. The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations. Alexandria Eng J, 2017, https://doi.org/10.1016/j.aej.2017.02.024

    Google Scholar 

  49. Shokri A, Dehghan M. A meshless method using radial basis functions for the numerical solution of two-dimensional complex Ginzburg-Landau equation. Computer Modeling in Engineering & Sciences, 2012, 84: 333–358

    MathSciNet  MATH  Google Scholar 

  50. Guo J, Jung J H. Radial basis function ENO and WENO finite difference methods based on the optimization of shape parameters. Journal of Scientific Computing, 2017, 70(2): 551–575

    Article  MathSciNet  MATH  Google Scholar 

  51. Dehghan M, Shokri A. A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Mathematics and Computers in Simulation, 2008, 79(3): 700–715

    Article  MathSciNet  MATH  Google Scholar 

  52. Bigoni C, Hesthaven J S. Adaptive WENO methods based on radial basis function reconstruction. Journal of Scientific Computing, 2017, 72(3): 986–1020

    Article  MathSciNet  MATH  Google Scholar 

  53. Sonar T. Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws. IMA Journal of Numerical Analysis, 1996, 16(4): 549–581

    Article  MathSciNet  MATH  Google Scholar 

  54. Golomb M, Weinberger H F. Optimal approximations and error bounds. In: Langer R E, ed. On Numerical Approximation. Madison: The University of Wisconsin Press, 1958, 117–190

    Google Scholar 

  55. Micchelli C A, Rivlin T J. A survey of optimal recovery. In: Micchelli C A, Rivlin T J, eds. Optimal Estimation in Approximation Theory. Springer, 1977, 1–54

    Chapter  Google Scholar 

  56. Hickernell F J, Hon Y. Radial basis function approximations as smoothing splines. Applied Mathematics and Computation, 1999, 102(1): 1–24

    Article  MathSciNet  MATH  Google Scholar 

  57. Iske A, Sonar T. On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions. Numer Math, 1996, 74(2): 177–201

    Article  MathSciNet  MATH  Google Scholar 

  58. Aboiyar T, Georgoulis E H, Iske A. High order WENO finite volume schemes using polyharmonic spline reconstruction. In: Agratini O, Blaga P, eds. International Conference on Numerical Analysis and Approximation Theory. Cluj-Napoca: Babeş–Bolyai University, 2006, 113–126

    Google Scholar 

  59. Guo J, Jung J H. A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method. Applied Numerical Mathematics, 2017, 112: 27–50

    Article  MathSciNet  MATH  Google Scholar 

  60. Schaback R. Error estimates and condition numbers for radial basis function interpolation. Advances in Computational Mathematics, 1995, 3(3): 251–264

    Article  MathSciNet  MATH  Google Scholar 

  61. Mallat S. A Wavelet Tour of Signal Processing. New Delhi: Academic Press, 1999

    Google Scholar 

  62. Alves M, Cruz P, Mendes A, Magalhaes F, Pinho F, Oliveira P. Adaptive multiresolution approach for solution of hyperbolic PDEs. Computer Methods in Applied Mechanics and Engineering, 2002, 191(36): 3909–3928

    Article  MATH  Google Scholar 

  63. Santos J, Cruz P, Alves M, Oliveira P, Magalhães F, Mendes A. Adaptive multiresolution approach for two-dimensional PDEs. Computer Methods in Applied Mechanics and Engineering, 2004, 193(3–5): 405–425

    Article  MATH  Google Scholar 

  64. Cohen A, Kaber S, Müller S, Postel M. Fully adaptive multiresolution finite volume schemes for conservation laws. Mathematics of Computation, 2003, 72(241): 183–225

    Article  MathSciNet  MATH  Google Scholar 

  65. Dahmen W, Gottschlich–Müller B, Müller S. Multiresolution schemes for conservation laws. Numer Math, 2001, 88(3): 399–443

    Article  MathSciNet  MATH  Google Scholar 

  66. Harten A. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Communications on Pure and Applied Mathematics, 1995, 48(12): 1305–1342

    Article  MathSciNet  MATH  Google Scholar 

  67. Gottschlich-Miiller B, Miiller S. Application of multiscale techniques to hyperbolic conservation laws. In: Chen Z, Li Y, Micchelli C, Xu Y, eds. Advances in Computational Mathematics, Lecture Notes in Pure & Applied Mathematics. Gaungzhou: Marcel Dekker, Inc., 1998, 113–138

    Google Scholar 

  68. Berres S, Burger R, Kozakevicius A. Numerical approximation of oscillatory solutions of hyperbolic-elliptic systems of conservation laws by multiresolution schemes. Advances in Applied Mathematics and Mechanics, 2009, 1: 581–614

    Article  MathSciNet  Google Scholar 

  69. Holmström M. Solving hyperbolic PDEs using interpolating wavelets. SIAM Journal on Scientific Computing, 1999, 21(2): 405–420

    Article  MathSciNet  MATH  Google Scholar 

  70. Yousefi H, Noorzad A, Farjoodi J. Multiresolution based adaptive schemes for second order hyperbolic PDEs in elastodynamic problems. Applied Mathematical Modelling, 2013, 37(12–13): 7095–7127

    Article  MathSciNet  MATH  Google Scholar 

  71. Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425–455

    Article  MathSciNet  MATH  Google Scholar 

  72. Wang J, Liu G. Radial point interpolation method for elastoplastic problems. In. ICSSD 2000: 1 st Structural Conference on Structural Stability and Dynamics. 2000, 703–708

    Google Scholar 

  73. Wang J, Liu G. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Computer Methods in Applied Mechanics and Engineering, 2002, 191(23–24): 2611–2630

    Article  MathSciNet  MATH  Google Scholar 

  74. Fasshauer G E. Meshfree Approximation Methods with Matlab. World Scientific Publishing Co Inc., 2007

    Google Scholar 

  75. Liu G R. Gu Y-T. An Introduction to Meshfree Methods and Their Programming. Springer Science & Business Media, 2005

    Google Scholar 

  76. Wendland H. Scattered Data Approximation. Cambridge University Press, 2004

    Google Scholar 

  77. Driscoll T A, Fornberg B. Interpolation in the limit of increasingly flat radial basis functions. Computers & Mathematics with Applications (Oxford, England), 2002, 43(3–5): 413–422

    Article  MathSciNet  MATH  Google Scholar 

  78. Fornberg B, Larsson E, Flyer N. Stable computations with Gaussian radial basis functions. SIAM Journal on Scientific Computing, 2011, 33(2): 869–892

    Article  MathSciNet  MATH  Google Scholar 

  79. Wright G B, Fornberg B. Stable computations with flat radial basis functions using vector-valued rational approximations. Journal of Computational Physics, 2017, 331: 137–156

    Article  MathSciNet  MATH  Google Scholar 

  80. Fornberg B, Wright G. Stable computation of multiquadric interpolants for all values of the shape parameter. Computers & Mathematics with Applications (Oxford, England), 2004, 48(5–6): 853–867

    Article  MathSciNet  MATH  Google Scholar 

  81. Fasshauer G E, Zhang J G. Scattered data approximation of noisy data via iterated moving least squares. Curves and Surfaces: Avignon, 2006

    Google Scholar 

  82. Fasshauer G E, Zhang J G. On choosing “optimal” shape parameters for RBF approximation. Numer Algor, 2007, 45(1–4): 345–368

    Article  MathSciNet  MATH  Google Scholar 

  83. Aboiyar T, Georgoulis E H, Iske A. Adaptive ADER methods using kernel-based polyharmonic spline WENO reconstruction. SIAM Journal on Scientific Computing, 2010, 32(6): 3251–3277

    Article  MathSciNet  MATH  Google Scholar 

  84. Kansa E, Carlson R. Improved accuracy of multiquadric interpolation using variable shape parameters. Computers & Mathematics with Applications (Oxford, England), 1992, 24(12): 99–120

    Article  MathSciNet  MATH  Google Scholar 

  85. Fornberg B, Zuev J. The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Computers & Mathematics with Applications (Oxford, England), 2007, 54(3): 379–398

    Article  MathSciNet  MATH  Google Scholar 

  86. Kansa E J. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications (Oxford, England), 1990, 19(8–9): 147–161

    Article  MathSciNet  MATH  Google Scholar 

  87. Hardy R L. Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research, 1971, 76(8): 1905–1915

    Article  Google Scholar 

  88. Rippa S. An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Advances in Computational Mathematics, 1999, 11(2/3): 193–210

    Article  MathSciNet  MATH  Google Scholar 

  89. Sanyasiraju Y, Satyanarayana C. On optimization of the RBF shape parameter in a grid-free local scheme for convection dominated problems over non-uniform centers. Applied Mathematical Modelling, 2013, 37(12–13): 7245–7272

    Article  MathSciNet  MATH  Google Scholar 

  90. Fjordholm U S, Ray D. A sign preserving WENO reconstruction method. Journal of Scientific Computing, 2016, 68(1): 42–63

    Article  MathSciNet  MATH  Google Scholar 

  91. Gottlieb S, Shu C W, Tadmor E. Strong stability-preserving highorder time discretization methods. SIAM Review, 2001, 43(1): 89–112

    Article  MathSciNet  MATH  Google Scholar 

  92. Franke R. Scattered data interpolation: tests of some methods. Mathematics of Computation, 1982, 38: 181–200

    MathSciNet  MATH  Google Scholar 

  93. Powell M J D. Tabulation of thin plate splines on a very fine twodimensional grid. In: Numerical Methods in Approximation Theory, Vol. 9. Springer, 1992, 221–244

    Article  MATH  Google Scholar 

  94. Arad N, Dyn N, Reisfeld D, Yeshurun Y. Image warping by radial basis functions: application to facial expressions. Graphical Models, 1994, 56(2): 161–172

    Article  Google Scholar 

  95. Powell M. Truncated Laurent expansions for the fast evaluation of thin plate splines. Numer Algor, 1993, 5(2): 99–120

    Article  MathSciNet  MATH  Google Scholar 

  96. Roussos G, Baxter B J. Rapid evaluation of radial basis functions. Journal of Computational and Applied Mathematics, 2005, 180(1): 51–70

    Article  MathSciNet  MATH  Google Scholar 

  97. Müller S. Adaptive Multiscale Schemes for Conservation Laws. Springer Science & Business Media, 2012

    Google Scholar 

  98. Cueto-Felgueroso L, Colominas I. High-order finite volume methods and multiresolution reproducing kernels. Archives of Computational Methods in Engineering, 2008, 15(2): 185–228

    Article  MathSciNet  MATH  Google Scholar 

  99. Iske A. Multiresolution Methods in Scattered Data Modelling. Springer Science & Business Media, 2004

    Google Scholar 

  100. Abd El-Latief A M, Khader S E. Exact solution of thermoelastic problem for a one-dimensional bar without energy dissipation. ISRN Mech Eng, 2014, 2014: 1–6

    Article  Google Scholar 

  101. Guo P, Wu W H, Wu Z G. A time discontinuous Galerkin finite element method for generalized thermo-elastic wave analysis, considering non-Fourier effects. Acta Mechanica, 2014, 225(1): 299–307

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Yousefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, H., Taghavi Kani, A. & Mahmoudzadeh Kani, I. Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems. Front. Struct. Civ. Eng. 13, 429–455 (2019). https://doi.org/10.1007/s11709-018-0483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-018-0483-5

Keywords

Navigation