Skip to main content
Log in

A multiquadric RBF–FD scheme for simulating the financial HHW equation utilizing exponential integrator

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We propose a computational scheme to solve the financial time-dependent 3D Heston–Hull–White PDE. In fact, a novel radial basis function (RBF) generated finite difference (FD) scheme associated with multiquadric RBF is introduced for solving this convection–diffusion–reaction equation. Non-uniform grids alongside the multiquadric RBF–FD technique are applied to obtain results of high accuracy in significant areas, at which the PDE problem is degenerate and discontinuous. The efficacy of the new scheme is shown through a series of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atkinson, K., Han, W.: Theoretical Numerical Analysis, A Functional Analysis Framework, 3rd edn. Springer, New York (2009)

    MATH  Google Scholar 

  2. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33, 488–511 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bakshi, G., Cao, C., Chen, Z.: Empirical performance of alternative option pricing models. J. Finance 52, 2003–2049 (1997)

    Article  Google Scholar 

  4. Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: RBF-FD formulas and convergence properties. J. Comput. Phys. 229, 8281–8295 (2010)

    Article  Google Scholar 

  5. Black, F., Karasinski, P.: Bond and option pricing when short rates are lognormal. Financ. Anal. J. 47, 52–59 (1991)

    Article  Google Scholar 

  6. Bollig, E.F., Flyer, N., Erlebacher, G.: Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs. J. Comput. Phys. 231, 7133–7151 (2012)

    Article  MathSciNet  Google Scholar 

  7. Briani, M., Natalini, R., Russo, G.: Implicit-explicit numerical schemes for jump-diffusion processes. Calcolo 44, 33–57 (2007)

    Article  MathSciNet  Google Scholar 

  8. Briani, M., Caramellinoy, L., Zanette, A.: A hybrid tree/finite-difierence approach for Heston–Hull–White type models. J. Comput. Finance 21, 1–45 (2017)

    Article  Google Scholar 

  9. Brigo, D., Mercurio, F.: Interest Rate Models—Theory and Practice: With Smile, Inflation and Credit, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Duffy, D.J.: Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. Wiley, London (2006)

    Book  Google Scholar 

  11. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific Publishing Co., Singapore (2007)

    Book  Google Scholar 

  12. Fischer, T.M.: On the stability of some algorithms for computing the action of the matrix exponential. Linear Algebra Appl. 443, 1–20 (2014)

    Article  MathSciNet  Google Scholar 

  13. Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Golbabai, A., Mohebianfar, E.: A new method for evaluating options based on multiquadric RBF-FD method. Appl. Math. Comput. 308, 130–141 (2017)

    MathSciNet  Google Scholar 

  15. Grzelak, L.A., Oosterlee, C.W.: On the Heston model with stochastic interest rates. SIAM J. Financ. Math. 2, 255–286 (2011)

    Article  MathSciNet  Google Scholar 

  16. Grzelak, L.A., Oosterlee, C.W.: On cross-currency models with stochastic volatility and correlated interest rates. Appl. Math. Finance 19, 1–35 (2012)

    Article  MathSciNet  Google Scholar 

  17. Guo, S., Grzelak, L.A., Oosterlee, C.W.: Analysis of an affine version of the Heston-Hull-White option pricing partial differential equation. Appl. Numer. Math. 72, 143–159 (2013)

    Article  MathSciNet  Google Scholar 

  18. Haentjens, T., In’t Hout, K.J.: Alternating direction implicit finite difference schemes for the Heston–Hull–White partial differential equation. J. Comput Finance 16, 83–110 (2012)

    Article  Google Scholar 

  19. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finan. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  20. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  21. Hout, K.J.I., Foulon, S.: ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7, 303–320 (2010)

    MathSciNet  Google Scholar 

  22. Hull, J., White, A.: Using Hull-White interest rate trees. J. Derivatives 4, 26–36 (1996)

    Article  Google Scholar 

  23. Hull, J., White, A.: The general Hull-White model and supercalibration. Financ. Anal. J. 57, 34–43 (2001)

    Article  Google Scholar 

  24. Kwok, Y.K.: Mathematical Models of Financial Derivatives, 2nd edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  25. Lin, F.-R., Yang, H.-X.: A fast stationary iterative method for a partial integro-differential equation in pricing options. Calcolo 50, 313–327 (2013)

    Article  MathSciNet  Google Scholar 

  26. Loffeld, J., Tokman, M.: Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs. J. Comput. Appl. Math. 241, 45–67 (2013)

    Article  MathSciNet  Google Scholar 

  27. Lord, G.J., Stone, D.: New efficient substepping methods for exponential timestepping. Appl. Math. Comput. 307, 342–365 (2017)

    MathSciNet  Google Scholar 

  28. Mangano, S.: Mathematica Cookbook. O’Reilly Media, Sebastopol (2010)

    Google Scholar 

  29. Milovanović, S., von Sydow, L.: Radial basis function generated finite differences for option pricing problems. Comput. Math. Appl. 75, 1462–1481 (2017)

    Article  MathSciNet  Google Scholar 

  30. Novozhilov, A.S.: Lecture Notes: Ordinary Differential Equations I, Non-Autonomous Linear Systems of ODE, General Theory, USA, pp. 74–86

  31. Rugh, W.J.: Linear System Theory, 2nd edn. Prentice-Hall, New Jersey (1996)

    MATH  Google Scholar 

  32. Scheuerer, M.: An alternative procedure for selecting a good value for the parameter \(c\) in RBF-interpolation. Adv. Comput. Math. 34, 105–126 (2011)

    Article  MathSciNet  Google Scholar 

  33. Schöbel, R., Zhu, J.: Stochastic volatility with an Ornstein–Uhlenbeck process: an extension. Eur. Finance Rev. 3, 23–46 (1999)

    Article  Google Scholar 

  34. Sofroniou, M., Knapp, R.: Advanced Numerical Differential Equation Solving in Mathematica. Wolfram Mathematica, Tutorial Collection, Champaign (2008)

    Google Scholar 

  35. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  36. Tolstykh, I.: On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations. In: Proceedings of 16th IMACS World Congress, vol. 228, pp. 4606–4624 (2000)

  37. Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a finite difference mode with applications to elasticity problems. Comput. Mech. 33, 68–79 (2003)

    Article  MathSciNet  Google Scholar 

  38. Trott, M.: The Mathematica Guidebook for Numerics. Springer, New York (2006)

    Book  Google Scholar 

  39. Van Haastrecht, A., Lord, R., Pelsser, A., Schrager, D.: Pricing long-maturity equity and FX derivatives with stochastic interest rates and stochastic volatility. Insurance Math. Econ. 45, 436–448 (2009)

    Article  Google Scholar 

  40. Wellin, P.R., Gaylord, R.J., Kamin, S.N.: An Introduction to Programming with Mathematica, 3rd edn. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  41. Yensiri, S., Skulkhu, R.J.: An investigation of radial basis function–finite difference (RBF–FD) method for numerical solution of elliptic partial differential equations. Mathematics 5, 1–14 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to an anonymous referee whose comments and suggestions helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlollah Soleymani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, F., Zaka Ullah, M. A multiquadric RBF–FD scheme for simulating the financial HHW equation utilizing exponential integrator. Calcolo 55, 51 (2018). https://doi.org/10.1007/s10092-018-0294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0294-z

Keywords

Mathematics Subject Classification

Navigation