Skip to main content
Log in

On choosing “optimal” shape parameters for RBF approximation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Many radial basis function (RBF) methods contain a free shape parameter that plays an important role for the accuracy of the method. In most papers the authors end up choosing this shape parameter by trial and error or some other ad hoc means. The method of cross validation has long been used in the statistics literature, and the special case of leave-one-out cross validation forms the basis of the algorithm for choosing an optimal value of the shape parameter proposed by Rippa in the setting of scattered data interpolation with RBFs. We discuss extensions of this approach that can be applied in the setting of iterated approximate moving least squares approximation of function value data and for RBF pseudo-spectral methods for the solution of partial differential equations. The former method can be viewed as an efficient alternative to ridge regression or smoothing spline approximation, while the latter forms an extension of the classical polynomial pseudo-spectral approach. Numerical experiments illustrating the use of our algorithms are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Boor, C.: On interpolation by radial polynomials. Adv. Comput. Math. 24, 143–153 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 131–138. Vanderbilt University Press, Nashville, TN (1997)

    Google Scholar 

  4. Fasshauer, G.E.: Approximate moving least-squares approximation: A fast and accurate multivariate approximation method In: Cohen, A., Merrien, J.-L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Saint-Malo 2002, pp. 139–148. Nashboro Press, Nashville, TN (2003)

    Google Scholar 

  5. Fasshauer, G.E.: Toward approximate moving least squares approximation with irregularly spaced centers. Comput. Methods Appl. Mech. Eng. 193, 1231–1243 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fasshauer, G.E.: RBF collocation methods and pseudospectral methods. Technical report, Illinois Institute of Technology (2004)

  7. Fasshauer, G.E.: RBF collocation methods as pseudospectral methods. In: Kassab, A., Brebbia, C.A., Divo, E., Poljak, D. (eds.) Boundary Elements XXVII, pp. 47–56. WIT Press, Southampton (2005)

    Google Scholar 

  8. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific Publishers, Singapore (2007) (in press)

    MATH  Google Scholar 

  9. Fasshauer, G.E., Zhang, J.G.: Iterated approximate moving least squares approximation. In: Leitao, V.M.A., Alves, C., Duarte, C.A. (eds.) Advances n Meshfree Techniques. Springer, Berlin (2007) (in press)

  10. Fasshauer, G.E., Zhang, J.G.: Scattered data approximation of noisy data via iterated moving least squares. In: Lyche, T., Merrien, J.L., Schumaker, L.L. (eds.) Curves and Surfaces: Avignon 2006, Nashboro Press, Nashville, TN (2007) (in press)

  11. Ferreira, A.J.M., Fasshauer, G.E.: Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method. Comput. Methods Appl. Mech. Eng. 196, 134–146 (2006)

    Article  MATH  Google Scholar 

  12. Ferreira, A.J.M., Fasshauer, G.E.: Analysis of natural frequencies of composite plates by an RBF-pseudospectral method. Compos. Struct., doi:10.1016/j.compstruct.2005.12.004 (2007)

  13. Ferreira, A.J.M., Fasshauer, G.E., Roque, C.M.C., Jorge, R.M.N., Batra, R.C.: Analysis of functionally graded plates by a robust meshless method. J. Mech. Adv. Mater. Struct. (2007) (in press)

  14. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  15. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 47, 497–523 (2004)

    Article  MathSciNet  Google Scholar 

  16. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. (2007) (in press)

  17. Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 48, 181–200 (1982)

    MathSciNet  Google Scholar 

  18. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)

    Article  Google Scholar 

  19. Hon, Y.C., Schaback, R.: On nonsymmetric collocation by radial basis functions. Appl. Math. Comput. 119, 177–186 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kansa, E.J.: Multiquadrics – a scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kansa, E.J., Carlson, R.E.: Improved accuracy of multiquadric interpolation using variable shape parameters. Comput. Math. Appl. 24, 99–120 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49, 103–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ling, L., Opfer, R., Schaback, R.: Results on meshless collocation techniques. Eng. Anal. Bound. Elem. 30, 247–253 (2006)

    Article  Google Scholar 

  25. Platte, R.B., Driscoll, T.A.: Eigenvalue stability of radial basis function discretizations for time-dependent problems. Comput. Math. Appl. 51(8), 1251–1268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sarra, S.A.: Adaptive radial basis function methods for time dependent partial differential equations. Appl. Numer. Math. 54, 79–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21, 293–317 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schaback, R.: Limit problems for interpolation by analytic radial basis functions. J. Comput. Appl. Math. (2007) (in press)

  30. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia, PA (2000)

    MATH  Google Scholar 

  31. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory E. Fasshauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasshauer, G.E., Zhang, J.G. On choosing “optimal” shape parameters for RBF approximation. Numer Algor 45, 345–368 (2007). https://doi.org/10.1007/s11075-007-9072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9072-8

Keywords

Mathematics Subject Classifications (2000)

Navigation