Skip to main content
Log in

A Sign Preserving WENO Reconstruction Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a third-order WENO reconstruction which satisfies the sign property, required for constructing high resolution entropy stable finite difference scheme for conservation laws. The reconstruction technique, which is termed as SP-WENO, is endowed with additional properties making it a more robust option compared to ENO schemes of the same order. The performance of the proposed reconstruction is demonstrated via a series of numerical experiments for linear and nonlinear scalar conservation laws. The scheme is easily extended to multi-dimensional conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Crandall, M.G., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34(149), 1–21 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, Volume 325 of Grundlehren der Mathematischen Wissenschaften, 3rd edn. Springer, Berlin (2010)

    Book  Google Scholar 

  3. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. FoCM 13(2), 139–159 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21(1), 1–23 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kružkov, S.N.: First order quasilinear equations with several independent variables. Math. Sb. (N.S.) 81(123), 228–255 (1970)

    MathSciNet  Google Scholar 

  11. Lefloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Osher, S.: Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21(2), 217–235 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Osher, S., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21(5), 955–984 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50(181), 19–51 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rogerson, A.M., Meiburg, E.: A numerical study of the convergence properties of ENO schemes. J. Sci. Comput. 5(2), 151–167 (1990)

    Article  MATH  Google Scholar 

  17. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Volume 1697 of Lecture Notes in Mathematics, pp. 325–432. Springer, Berlin (1998)

    Google Scholar 

  18. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tadmor, E.: Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43(168), 369–381 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrik S. Fjordholm.

Additional information

D.R. was supported by AIRBUS Group Corporate Foundation Chair in Mathematics of Complex Systems, established in TIFR/ICTS, Bangalore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fjordholm, U.S., Ray, D. A Sign Preserving WENO Reconstruction Method. J Sci Comput 68, 42–63 (2016). https://doi.org/10.1007/s10915-015-0128-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0128-y

Keywords

Navigation