Skip to main content
Log in

Nanoparticles embedded into glass matrices: glass nanocomposites

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Research on glass nanocomposites (GNCs) has been very active in the past decades. GNCs have attracted — and still do — great interest in the fields of optoelectronics, photonics, sensing, electrochemistry, catalysis, biomedicine, and art. In this review, the potential applications of GNCs in these fields are briefly described to show the reader the possibilities of these materials. The most important synthesis methods of GNCs (melt-quenching, sol-gel, ion implantation, ion-exchange, staining process, spark plasma sintering, radio frequency sputtering, spray pyrolysis, and chemical vapor deposition techniques) are extensively explained. The major aim of this review is to systematize our knowledge about the synthesis of GNCs and to explore the mechanisms of formation and growth of NPs within glass matrices. The size-controlled preparation of NPs within glass matrices, which remains a challenge, is essential for advanced applications. Therefore, a thorough understanding of GNC synthesis techniques is expected to facilitate the preparation of innovative GNCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee J, Mahendra S, Alvarez P J J. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano, 2010, 4(7): 3580–3590

    Article  CAS  Google Scholar 

  2. Yang Z, Ren J, Zhang Z, et al. Recent advancement of nanostructured carbon for energy applications. Chemical Reviews, 2015, 115(11): 5159–5223

    Article  CAS  Google Scholar 

  3. Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377

    Article  Google Scholar 

  4. Sanchez F, Sobolev K. Nanotechnology in concrete — a review. Construction and Building Materials, 2010, 24(11): 2060–2071

    Article  Google Scholar 

  5. Shang L, Bian T, Zhang B, et al. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angewandte Chemie International Edition, 2014, 53(1): 250–254

    Article  CAS  Google Scholar 

  6. Yuan Q, Duan H H, Li L L, et al. Homogeneously dispersed ceria nanocatalyst stabilized with ordered mesoporous alumina. Advanced Materials, 2010, 22(13): 1475–1478

    Article  CAS  Google Scholar 

  7. Ohko Y, Tatsuma T, Fujii T, et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nature Materials, 2003, 2(1): 29–31

    Article  CAS  Google Scholar 

  8. Lykhach Y, Staudt T, Tsud N, et al. Enhanced reactivity of Pt nanoparticles supported on ceria thin films during ethylene dehydrogenation. Physical Chemistry Chemical Physics, 2011, 13(1): 253–261

    Article  CAS  Google Scholar 

  9. Mitra A, De G. Chapter 6: Sol-gel synthesis of metal nanoparticle incorporated oxide films on glass. Glass Nanocomposites: Synthesis, Properties and Applications, 2016: 145–163

  10. Fonseca J, Lu J. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catalysis, 2021, 11(12): 7018–7059

    Article  CAS  Google Scholar 

  11. Karmakar B. Chapter 1: Fundamentals of glass and glass nanocomposites. Glass Nanocomposites: Synthesis, Properties and Applications, 2016: 3–53

  12. Zanotto E D, Mauro J C. The glassy state of matter: its definition and ultimate fate. Journal of Non-Crystalline Solids, 2017, 471: 490–495

    Article  CAS  Google Scholar 

  13. Fonseca J, Gong T, Jiao L, et al. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. Journal of Materials Chemistry A, 2021, 9(17): 10562–10611

    Article  CAS  Google Scholar 

  14. Xiang W, Gao H, Ma L, et al. Valence state control and third-order nonlinear optical properties of copper embedded in sodium borosilicate glass. ACS Applied Materials & Interfaces, 2015, 7(19): 10162–10168

    Article  CAS  Google Scholar 

  15. Zhong J, Xiang W, Chen Z, et al. Microstructures and third-order optical nonlinearities of Cu2In nanoparticles in glass matrix. Journal of Alloys and Compounds, 2013, 572: 137–144

    Article  CAS  Google Scholar 

  16. Chatterjee S, Saha S K, Chakravorty D. Chapter 2: Glass-based nanocomposites. Glass Nanocomposites: Synthesis, Properties and Applications, 2016: 57–88

  17. Amendola V, Pilot R, Frasconi M, et al. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter, 2017, 29(20): 203002

    Google Scholar 

  18. Korgel B A. Materials science: composite for smarter windows. Nature, 2013, 500(7462): 278–279

    Article  CAS  Google Scholar 

  19. Mangin S, Gottwald M, Lambert C H, et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nature Materials, 2014, 13(3): 286–292

    Article  CAS  Google Scholar 

  20. Llordés A, Garcia G, Gazquez J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature, 2013, 500(7462): 323–326

    Article  Google Scholar 

  21. Castro J M, Geraghty D F, West B R, et al. Fabrication and comprehensive modeling of ion-exchanged Bragg optical add-drop multiplexers. Applied Optics, 2004, 43(33): 6166–6173

    Article  Google Scholar 

  22. Veasey D L, Funk D S, Peters P M, et al. Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass. Journal of Non-Crystalline Solids, 2000, 263–264: 369–381

    Article  Google Scholar 

  23. Tervonen A, West B R, Honkanen S K. Ion-exchanged glass waveguide technology: a review. Optical Engineering, 2011, 50(7): 071107

    Article  Google Scholar 

  24. Choi J, Bellec M, Royon A, et al. Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass. Optics Letters, 2012, 37(6): 1029–1031

    Article  CAS  Google Scholar 

  25. Royon A, Bourhis K, Bellec M, et al. Silver clusters embedded in glass as a perennial high capacity optical recording medium. Advanced Materials, 2010, 22(46): 5282–5286

    Article  CAS  Google Scholar 

  26. Azlan M N, Hajer S S, Halimah M K, et al. Comprehensive comparison on optical properties of samarium oxide (micro/nano) particles doped tellurite glass for optoelectronics applications. Journal of Materials Science Materials in Electronics, 2021, 32(11): 14174–14185

    Article  CAS  Google Scholar 

  27. Oh Y J, Jeong K H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Advanced Materials, 2012, 24(17): 2234–2237

    Article  CAS  Google Scholar 

  28. Kurobori T, Nakamura S. A novel disk-type X-ray area imaging detector using radiophotoluminescence in silver-activated phosphate glass. Radiation Measurements, 2012, 47(10): 1009–1013

    Article  CAS  Google Scholar 

  29. Kato M, Chida K, Moritake T, et al. Direct dose measurement on patient during percutaneous coronary intervention procedures using radiophotoluminescence glass dosimeters. Radiation Protection Dosimetry, 2017, 175(1): 31–37

    CAS  Google Scholar 

  30. Werner S, Navaridas J, Luján M. A survey on optical network-on-chip architectures. ACM Computing Surveys, 2017, 50(6): 1–37

    Article  Google Scholar 

  31. Heidt A M, Li Z, Sahu J, et al. 100 kW Peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 µm. Optics Letters, 2013, 38(10): 1615–1617

    Article  CAS  Google Scholar 

  32. Li M, Huang S, Wang Q, et al. Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser. Optics Letters, 2014, 39(3): 693–696

    Article  CAS  Google Scholar 

  33. Najafi S I, Lefebvre P, Albert J, et al. Ion-exchanged Mach—Zehnder interferometers in glass. Applied Optics, 1992, 31(18): 3381–3383

    Article  CAS  Google Scholar 

  34. Chakraborty P. Metal nanoclusters in glasses as non-linear photonic materials. Journal of Materials Science, 1998, 33(9): 2235–2249

    Article  CAS  Google Scholar 

  35. Haglund R F Jr. Ion implantation as a tool in the synthesis of practical third-order nonlinear optical materials. Materials Science and Engineering A, 1998, 253(1–2): 275–283

    Article  Google Scholar 

  36. Weber M J, Milam D, Smith W L. Nonlinear refractive index of glasses and crystals. Optical Engineering, 1978, 17(5): 463–469

    Article  CAS  Google Scholar 

  37. Ryasnyansky A I, Palpant B, Debrus S, et al. Nonlinear optical properties of copper nanoparticles synthesized in indium tin oxide matrix by Ion implantation. Journal of the Optical Society of America B, 2006, 23(7): 1348–1353

    Article  CAS  Google Scholar 

  38. Chemla D S, Miller D A B. Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures. Journal of the Optical Society of America B, 1985, 2(7): 1155–1173

    Article  CAS  Google Scholar 

  39. Kawabata A, Kubo R. Electronic properties of fine metallic particles. II. Plasma resonance absorption. Journal of the Physical Society of Japan, 1966, 21(9): 1765–1772

    Article  CAS  Google Scholar 

  40. Halperin W P. Quantum size effects in metal particles. Reviews of Modern Physics, 1986, 58(3): 533–606

    Article  CAS  Google Scholar 

  41. Haglund R F Jr, Yang L, Magruder R H III, et al. Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1994, 91(1–4): 493–504

    Article  CAS  Google Scholar 

  42. Garland J C, Tanner D B. Electrical Transport and Optical Properties of Inhomogeneous Media. New York, USA: American Institute of Physics, 1978

    Google Scholar 

  43. Li Y Q, Sung C C, Inguva R, et al. Nonlinear-optical properties of semiconductor composite materials. Journal of the Optical Society of America B, 1989, 6(4): 814–817

    Article  CAS  Google Scholar 

  44. Hale D K. The physical properties of composite materials. Journal of Materials Science, 1976, 11(11): 2105–2141

    Article  CAS  Google Scholar 

  45. Haus J W, Kalyaniwalla N, Inguva R, et al. Nonlinear-optical properties of conductive spheroidal particle composites. Journal of the Optical Society of America B, 1989, 6(4): 797–807

    Article  CAS  Google Scholar 

  46. Hou W, Cronin S B. A review of surface plasmon resonance-enhanced photocatalysis. Advanced Functional Materials, 2013, 23(13): 1612–1619

    Article  CAS  Google Scholar 

  47. Kabi S, Ghosh A. Structural investigation on silver phosphate glasses embedded with nanoparticles. Journal of Alloys and Compounds, 2012, 520: 238–243

    Article  CAS  Google Scholar 

  48. Wang Q Q, Han J B, Gong H M, et al. Linear and nonlinear optical properties of Ag nanowire polarizing glass. Advanced Functional Materials, 2006, 16(18): 2405–2408

    Article  CAS  Google Scholar 

  49. Lin G, Pan H H, Qiu J R, et al. Nonlinear optical properties of lead nanocrystals embedding glass induced by thermal treatment and femtosecond laser irradiation. Chemical Physics Letters, 2011, 516(4–6): 186–191

    Article  CAS  Google Scholar 

  50. Qu S, Zhang Y, Li H, et al. Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser. Optical Materials, 2006, 28(3): 259–265

    Article  CAS  Google Scholar 

  51. Lin G, Tan D Z, Luo F F, et al. Linear and nonlinear optical properties of glasses doped with Bi nanoparticles. Journal of Non-Crystalline Solids, 2011, 357(11–13): 2312–2315

    Article  CAS  Google Scholar 

  52. Hache F, Ricard D, Flytzanis C. Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects. Journal of the Optical Society of America B, 1986, 3(12): 1647–1655

    Article  CAS  Google Scholar 

  53. Christensen N E, Seraphin B O. Relativistic band calculation and the optical properties of gold. Physical Review B, 1971, 4(10): 3321–3344

    Article  Google Scholar 

  54. Hache F, Ricard D, Flytzanis C, et al. The optical kerr effect in small metal particles and metal colloids: The case of gold. Applied Physics A: Materials Science & Processing, 1988, 47: 347–357

    Article  Google Scholar 

  55. Liz-Marzán L M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir, 2006, 22(1): 32–41

    Article  Google Scholar 

  56. El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research, 2001, 34(4): 257–264

    Article  CAS  Google Scholar 

  57. Link S, El-Sayed M A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 2000, 19(3): 409–453

    Article  CAS  Google Scholar 

  58. Moores A, Goettmann F. The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New Journal of Chemistry, 2006, 30(8): 1121–1132

    Article  CAS  Google Scholar 

  59. Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248

    Article  CAS  Google Scholar 

  60. Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006, 35(3): 209–217

    Article  CAS  Google Scholar 

  61. De G, Medda S K, De S, et al. Metal nanoparticle doped coloured coatings on glasses and plastics through tuning of surface plasmon band position. Bulletin of Materials Science, 2008, 31(3): 479–485

    Article  CAS  Google Scholar 

  62. Underwood S, Mulvaney P. Effect of the solution refractive index on the color of gold colloids. Langmuir, 1994, 10(10): 3427–3430

    Article  CAS  Google Scholar 

  63. Ghosh S K, Nath S, Kundu S, et al. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. The Journal of Physical Chemistry B, 2004, 108(37): 13963–13971

    Article  CAS  Google Scholar 

  64. Rechberger W, Hohenau A, Leitner A, et al. Optical properties of two interacting gold nanoparticles. Optics Communications, 2003, 220(1–3): 137–141

    Article  CAS  Google Scholar 

  65. Jain P K, Qian W, El-Sayed M A. Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. The Journal of Physical Chemistry B, 2006, 110(1): 136–142

    Article  CAS  Google Scholar 

  66. Su K H, Wei Q H, Zhang X, et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters, 2003, 3(8): 1087–1090

    Article  CAS  Google Scholar 

  67. Jain P K, Eustis S, El-Sayed M A. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. The Journal of Physical Chemistry B, 2006, 110(37): 18243–18253

    Article  CAS  Google Scholar 

  68. De S, De G. In-situ generation of Au nanoparticles in UV-curable refractive index controlled SiO2—TiO2—PEO hybrid films. The Journal of Physical Chemistry C, 2008, 112(28): 10378–10384

    Article  CAS  Google Scholar 

  69. Medda S K, Mitra M, De G. Tuning of Ag-SPR band position in refractive index controlled inorganic—organic hybrid SiO2—PEO—TiO2 films. Journal of Chemical Sciences, 2008, 120(6): 565–572

    Article  CAS  Google Scholar 

  70. Zhang J, Fu Y, Chowdhury M H, et al. Plasmon-coupled fluorescence probes: effect of emission wavelength on fluorophore-labeled silver particles. The Journal of Physical Chemistry C, 2008, 112(25): 9172–9180

    Article  CAS  Google Scholar 

  71. Zhang Y, Dragan A, Geddes C D. Wavelength dependence of metal-enhanced fluorescence. The Journal of Physical Chemistry C, 2009, 113(28): 12095–12100

    Article  CAS  Google Scholar 

  72. Zhang J, Fu Y, Chowdhury M H, et al. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Letters, 2007, 7(7): 2101–2107

    Article  CAS  Google Scholar 

  73. Katsuaki T. Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. The Journal of Physical Chemistry C, 2008, 112(40): 15721–15728

    Article  Google Scholar 

  74. Zhu J. Spatial dependence of the local field enhancement in dielectric shell coated silver nanospheres. Applied Surface Science, 2007, 253(21): 8729–8733

    Article  CAS  Google Scholar 

  75. Jupri S A, Ghoshal S K, Yusof N N, et al. Influence of surface plasmon resonance of Ag nanoparticles on photoluminescence of Ho3+ ions in magnesium—zinc-sulfophosphate glass system. Optics and Laser Technology, 2020, 126: 106134

    Article  CAS  Google Scholar 

  76. Sontakke A D, Biswas K, Annapurna K. Concentration-dependent luminescence of Tb3+ ions in high calcium aluminosilicate glasses. Journal of Luminescence, 2009, 129(11): 1347–1355

    Article  CAS  Google Scholar 

  77. Karunakaran R T, Marimuthu K, Surendra Babu S, et al. Structural, optical and thermal studies of Eu3+ ions in lithium fluoroborate glasses. Solid State Sciences, 2009, 11(11): 1882–1889

    Article  CAS  Google Scholar 

  78. Nageswara Raju C, Sailaja S, Hemasundara Raju S, et al. Emission analysis of CdO—Bi2O3—B2O3 glasses doped with Eu3+ and Tb3+. Ceramics International, 2014, 40(6): 7701–7709

    Article  CAS  Google Scholar 

  79. Vařák P, Nekvindová P, Vytykáčová S, et al. Near-infrared photoluminescence enhancement and radiative energy transfer in RE-doped zinc-silicate glass (RE = Ho, Er, Tm) after silver ion exchange. Journal of Non-Crystalline Solids, 2021, 557: 120580

    Article  Google Scholar 

  80. Canevali C, Mattoni M, Morazzoni F, et al. Stability of luminescent trivalent cerium in silica host glasses modified by boron and phosphorus. Journal of the American Chemical Society, 2005, 127(42): 14681–14691

    Article  CAS  Google Scholar 

  81. Cao W, Huang F, Wang Z, et al. Controllable structural tailoring for enhanced luminescence in highly Er3+-doped germanosilicate glasses. Optics Letters, 2018, 43(14): 3281–3284

    Article  CAS  Google Scholar 

  82. Huang F, E F, Lei R, et al. Enhancing the Er3+: Infrared and mid-infrared emission performance in germanosilicate-zinc glasses. Journal of Luminescence, 2019, 213: 370–375

    Article  CAS  Google Scholar 

  83. Vijayakumar R, Marimuthu K. Luminescence studies on Ag nanoparticles embedded Eu3+ doped boro-phosphate glasses. Journal of Alloys and Compounds, 2016, 665: 294–303

    Article  CAS  Google Scholar 

  84. Kamrádek M, Kašík I, Aubrecht J, et al. Nanoparticle and solution doping for efficient holmium fiber lasers. IEEE Photonics Journal, 2019, 11(5): 1–10

    Article  Google Scholar 

  85. Baker C C, Friebele E J, Burdett A A, et al. Nanoparticle doping for high power fiber lasers at eye-safer wavelengths. Optics Express, 2017, 25(12): 13903–13915

    Article  CAS  Google Scholar 

  86. Zhang W, Lin J, Cheng M, et al. Radiative transition, local field enhancement and energy transfer microcosmic mechanism of tellurite glasses containing Er3+, Yb3+ ions and Ag nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 159: 39–52

    Article  CAS  Google Scholar 

  87. Meng S, Zhao G, Hou J, et al. High performance of near-infrared emission for S-band amplifier from Tm3+-doped bismuth glass incorporated with Ag nanoparticles. Journal of Luminescence, 2020, 224: 117313

    Article  CAS  Google Scholar 

  88. Sgibnev Y M, Nikonorov N V, Ignatiev A I. High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: influence of antimony content and heat treatment parameters. Journal of Luminescence, 2017, 188: 172–179

    Article  CAS  Google Scholar 

  89. Zmojda J, Miluski P, Kochanowicz M. Nanocomposite antimony-germanate-borate glass fibers doped with Eu3+ ions with self-assembling silver nanoparticles for photonic applications. Applied Sciences, 2018, 8(5): 790

    Article  Google Scholar 

  90. Fares H, Elhouichet H, Gelloz B, et al. Surface plasmon resonance induced Er3+ photoluminescence enhancement in tellurite glass. Journal of Applied Physics, 2015, 117(19): 193102

    Article  Google Scholar 

  91. Kichanov S E, Kozlenko D P, Gorshkova Y E, et al. Structural studies of nanoparticles doped with rare-earth ions in oxyfluoride lead-silicate glasses. Journal of Nanoparticle Research, 2018, 20(3): 54

    Article  Google Scholar 

  92. Moskovits M. Surface-enhanced spectroscopy. Reviews of Modern Physics, 1985, 57(3): 783–826

    Article  CAS  Google Scholar 

  93. Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106

    Article  CAS  Google Scholar 

  94. Simo A, Joseph V, Fenger R, et al. Long-term stable silver subsurface ion-exchanged glasses for SERS applications. ChemPhysChem, 2011, 12(9): 1683–1688

    Article  CAS  Google Scholar 

  95. Haynes C L, McFarland A D, Van Duyne R P. Surface-enhanced Raman spectroscopy. Analytical Chemistry, 2005, 77(17): 338A–346A

    Article  CAS  Google Scholar 

  96. Schatz G C. Theoretical studies of surface enhanced Raman scattering. Accounts of Chemical Research, 1984, 17(10): 370–376

    Article  CAS  Google Scholar 

  97. Dousti M R, Sahar M R, Amjad R J, et al. Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium-zinc-tellurite glass. Journal of Luminescence, 2013, 143: 368–373

    Article  CAS  Google Scholar 

  98. Moskovits M. Surface-enhanced Raman spectroscopy: a brief perspective. In: Kneipp K, Moskovits M, Kneipp H, eds. Surface-enhanced Raman scattering. Topics in Applied Physics. Berlin, Heidelberg: Springer, 2006: 103

    Google Scholar 

  99. Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews, 1998, 27(4): 241–250

    Article  CAS  Google Scholar 

  100. Qian X M, Nie S M. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chemical Society Reviews, 2008, 37(5): 912–920

    Article  CAS  Google Scholar 

  101. Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974, 26(2): 163–166

    Article  CAS  Google Scholar 

  102. Liu D, Chen X, Hu Y, et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nature Communications, 2018, 9: 193

    Article  Google Scholar 

  103. Kneipp J, Kneipp H, Kneipp K. SERS — a single-molecule and nanoscale tool for bioanalytics. Chemical Society Reviews, 2008, 37(5): 1052–1060

    Article  CAS  Google Scholar 

  104. Wells S M, Retterer S D, Oran J M, et al. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy. ACS Nano, 2009, 3(12): 3845–3853

    Article  CAS  Google Scholar 

  105. Wang H, Levin C S, Halas N J. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates. Journal of the American Chemical Society, 2005, 127(43): 14992–14993

    Article  CAS  Google Scholar 

  106. Pal P, Bonyár A, Veres M, et al. A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland arrangements and their non-dimensional interparticle distance/particle diameter ratio. Sensors and Actuators A: Physical, 2020, 314: 112225

    Article  CAS  Google Scholar 

  107. Chou C M, Thanh Thi L T, Quynh Nhu N T, et al. Zinc oxide nanorod surface-enhanced Raman scattering substrates without and with gold nanoparticles fabricated through pulsed-laser-induced photolysis. Applied Sciences, 2020, 10(14): 5015

    Article  CAS  Google Scholar 

  108. Yahata A, Ishii H, Nakamura K, et al. Three-dimensional periodic structures of gold nanoclusters in the interstices of sub-100 nm polymer particles toward surface-enhanced Raman scattering. Advanced Powder Technology, 2019, 30(12): 2957–2963

    Article  CAS  Google Scholar 

  109. Belusso L C S, Lenz G F, Fiorini E E, et al. Synthesis of silver nanoparticles from bottom up approach on borophosphate glass and their applications as SERS, antibacterial and glass-based catalyst. Applied Surface Science, 2019, 473: 303–312

    Article  CAS  Google Scholar 

  110. Goodenough J B, Braga M H. Batteries for electric road vehicles. Dalton Transactions, 2018, 47(3): 645–648

    Article  CAS  Google Scholar 

  111. Braga M H, Grundish N S, Murchison A J, et al. Alternative strategy for a safe rechargeable battery. Energy & Environmental Science, 2017, 10(1): 331–336

    Article  CAS  Google Scholar 

  112. Mikolajczak C, Kahn M, White K, et al. Lithium-Ion Batteries Hazard and Use Assessment. Springer, 2011, ISBN-13: 978-1461434856

  113. Braga M H, Murchison A J, Ferreira J A, et al. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy & Environmental Science, 2016, 9(3): 948–954

    Article  CAS  Google Scholar 

  114. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nature Materials, 2011, 10(9): 682–686

    Article  CAS  Google Scholar 

  115. Duclot M, Souquet J L. Glassy materials for lithium batteries: electrochemical properties and devices performances. Journal of Power Sources, 2001, 97–98: 610–615

    Article  Google Scholar 

  116. Janek J, Zeier W G. A solid future for battery development. Nature Energy, 2016, 1(9): 16141

    Article  Google Scholar 

  117. Manuel Stephan A, Nahm K S. Review on composite polymer electrolytes for lithium batteries. Polymer, 2006, 47(16): 5952–5964

    Article  Google Scholar 

  118. Munshi M Z A. Handbook of Solid State Batteries and Capacitors. Singapore: World Scientific, 1995

    Book  Google Scholar 

  119. Troy S, Schreiber A, Reppert T, et al. Life cycle assessment and resource analysis of all-solid-state batteries. Applied Energy, 2016, 169: 757–767

    Article  Google Scholar 

  120. Mohamed E A, Nabhan E, Ratep A, et al. Influence of BaTiO3 nanoparticles/clusters on the structural and dielectric properties of glasses-nanocomposites. Physical Review B: Condensed Matter, 2020, 589: 412220

    CAS  Google Scholar 

  121. Mohamed E A, Moustafa M G, Kashif I. Microstructure, thermal, optical and dielectric properties of new glass nanocomposites of SrTiO3 nanoparticles/clusters in tellurite glass matrix. Journal of Non-Crystalline Solids, 2018, 482: 223–229

    Article  CAS  Google Scholar 

  122. Menazea A A, Abdelghany A M, Hakeem N A, et al. Precipitation of silver nanoparticles in borate glasses by 1064 nm Nd:YAG nanosecond laser pulses: characterization and dielectric studies. Journal of Electronic Materials, 2020, 49(1): 826–832

    Article  CAS  Google Scholar 

  123. Menazea A A, Abdelghany A M, Hakeem N A, et al. Nd:YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies. Silicon, 2020, 12(1): 13–20

    Article  CAS  Google Scholar 

  124. Abdel-Khalek E K, Elsharkawy M A, Motawea M A, et al. Dielectric and thermal properties of tetragonal PbTiO3 nanoparticles/clusters embedded in lithium tetraborate glass matrix. Silicon, 2021, 13: 2993–3002

    Article  CAS  Google Scholar 

  125. Rejikumar P R, Jyothy P V, Mathew S, et al. Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass. Physical Review B: Condensed Matter, 2010, 405: 1513–1517

    CAS  Google Scholar 

  126. Abdelghany A M, Zeyada H M, ElBatal H A, et al. AC conductivity and dielectric behavior of silicophosphate glass doped by Nd2O3. Silicon, 2017, 9(3): 347–354

    Article  CAS  Google Scholar 

  127. Yang K, Liu J, Shen B, et al. Large improvement on energy storage and charge—discharge properties of Gd2O3-doped BaO—K2O—Nb2O5—SiO2 glass-ceramic dielectrics. Materials Science and Engineering B, 2017, 223: 178–184

    Article  Google Scholar 

  128. Fonseca J, Choi S. Electro-and photoelectro-catalysts derived from bimetallic amorphous metal-organic frameworks. Catalysis Science & Technology, 2020, 10(24): 8265–8282

    Article  CAS  Google Scholar 

  129. Ellis L D, Rorrer N A, Sullivan K P, et al. Chemical and biological catalysis for plastics recycling and upcycling. Nature Catalysis, 2021, 4(7): 539–556

    Article  CAS  Google Scholar 

  130. Schlögl R. Heterogeneous catalysis. Angewandte Chemie International Edition, 2015, 54(11): 3465–3520

    Article  Google Scholar 

  131. Gärtner D, Sandl S, Jacobi von Wangelin A. Homogeneous vs. heterogeneous: mechanistic insights into iron group metal-catalyzed reductions from poisoning experiments. Catalysis Science & Technology, 2020, 10(11): 3502–3514

    Article  Google Scholar 

  132. Lee A F, Bennett J A, Manayil J C, et al. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews, 2014, 43(22): 7887–7916

    Article  CAS  Google Scholar 

  133. Khan S A, Khan N, Irum U, et al. Cellulose acetate-Ce/Zr@Cu0 catalyst for the degradation of organic pollutant. International Journal of Biological Macromolecules, 2020, 153: 806–816

    Article  CAS  Google Scholar 

  134. Gao C, Lyu F, Yin Y. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881

    Article  CAS  Google Scholar 

  135. Jin R, Li G, Sharma S, et al. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chemical Reviews, 2021, 121(2): 567–648

    Article  CAS  Google Scholar 

  136. Majhi S, Sharma K, Singh R, et al. Development of silver nanoparticles decorated on functional glass slide as highly efficient and recyclable dip catalyst. ChemistrySelect, 2020, 5(40): 12365–12370

    Article  CAS  Google Scholar 

  137. Mennecke K, Cecilia R, Glasnov T N, et al. Palladium(0) nanoparticles on glass—polymer composite materials as recyclable catalysts: a comparison study on their use in batch and continuous flow processes. Advanced Synthesis & Catalysis, 2008, 350(5): 717–730

    Article  CAS  Google Scholar 

  138. Elhage A, Wang B, Marina N, et al. Glass wool: a novel support for heterogeneous catalysis. Chemical Science, 2018, 9(33): 6844–6852

    Article  CAS  Google Scholar 

  139. Lenz G F, Schneider R, Rossi de Aguiar K M F, et al. Self-supported nickel nanoparticles on germanophosphate glasses: synthesis and applications in catalysis. RSC Advances, 2019, 9(30): 17157–17164

    Article  CAS  Google Scholar 

  140. Luo X, Meng M, Li R, et al. Honeycomb-like porous metallic glasses decorated by Cu nanoparticles formed by one-pot electrochemically galvanostatic etching. Materials & Design, 2020, 196: 109109

    Article  CAS  Google Scholar 

  141. Zheng K, Boccaccini A R. Sol-gel processing of bioactive glass nanoparticles: a review. Advances in Colloid and Interface Science, 2017, 249: 363–373

    Article  CAS  Google Scholar 

  142. Brauer D S. Bioactive glasses — structure and properties. Angewandte Chemie International Edition, 2015, 54(14): 4160–4181

    Article  CAS  Google Scholar 

  143. Jones J R. Review of bioactive glass: from Hench to hybrids. Acta Biomaterialia, 2013, 9(1): 4457–4486

    Article  CAS  Google Scholar 

  144. Miguez-Pacheco V, Hench L L, Boccaccini A R. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomaterialia, 2015, 13: 1–15

    Article  CAS  Google Scholar 

  145. Baino F, Novajra G, Miguez-Pacheco V, et al. Bioactive glasses: special applications outside the skeletal system. Journal of Non-Crystalline Solids, 2016, 432: 15–30

    Article  CAS  Google Scholar 

  146. Hench L L, Splinter R J, Allen W C, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971, 5(6): 117–141

    Article  Google Scholar 

  147. Erol-Taygun M, Zheng K, Boccaccini A R. Nanoscale bioactive glasses in medical applications. International Journal of Applied Glass Science, 2013, 4(2): 136–148

    Article  CAS  Google Scholar 

  148. Vichery C, Nedelec J M. Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications. Materials, 2016, 9(4): 288–295

    Article  Google Scholar 

  149. Hum J, Boccaccini A R. Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. Journal of Materials Science: Materials in Medicine, 2012, 23(10): 2317–2333

    CAS  Google Scholar 

  150. Wu C, Fan W, Chang J. Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. Journal of Materials Chemistry B, 2013, 1(21): 2710–2718

    Article  CAS  Google Scholar 

  151. Blackburn G, Scott T G, Bayer I S, et al. Bionanomaterials for bone tumor engineering and tumor destruction. Journal of Materials Chemistry B, 2013, 1(11): 1519–1534

    Article  CAS  Google Scholar 

  152. Jayalekshmi A C, Victor S P, Sharma C P. Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 101: 196–204

    Article  CAS  Google Scholar 

  153. Wu C, Fan W, Zhu Y, et al. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomaterialia, 2011, 7(10): 3563–3572

    Article  CAS  Google Scholar 

  154. Shih S J, Tzeng W L, Jatnika R, et al. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(4): 899–907

    Article  Google Scholar 

  155. Li J, Zhai D, Lv F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomaterialia, 2016, 36: 254–266

    Article  CAS  Google Scholar 

  156. Ventura M G, Parola A J, Pires de Matos A. Influence of heat treatment on the colour of Au and Ag glasses produced by the sol-gel pathway. Journal of Non-Crystalline Solids, 2011, 357(4): 1342–1349

    Article  CAS  Google Scholar 

  157. Mazzold P, Carturan S, Quaranta A, et al. Ion exchange process: history, evolution and applications. Rivista del Nuovo Cimento, 2013, 36: 397–460

    Google Scholar 

  158. Molina G, Murcia S, Molera J, et al. Color and dichroism of silver-stained glasses. Journal of Nanoparticle Research, 2013, 15(9): 1932

    Article  Google Scholar 

  159. Pradell T, Molera J, Roque J, et al. Ionic-exchange mechanism in the formation of medieval luster decorations. Journal of the American Ceramic Society, 2005, 88(5): 1281–1289

    Article  CAS  Google Scholar 

  160. Palomar T, Redol P, Cruz Almeida I, et al. The influence of environment in the alteration of the stained-glass windows in Portuguese monuments. Heritage, 2018, 1(2): 365–376

    Article  Google Scholar 

  161. Palomar T, Grazia C, Pombo Cardoso I, et al. Analysis of chromophores in stained-glass windows using visible hyperspectral imaging in-situ. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117378

    Article  CAS  Google Scholar 

  162. Machado C, Machado A, Palomar T, et al. Debitus grisailles for stained-glass conservation: an analytical study. Conservar Património, 2020, 34: 65–72

    Article  Google Scholar 

  163. Gonella F, Mazzoldi P. Chapter 2: Metal nanocluster composite glasses. Handbook of Nanostructured Materials and Nanotechnology, 2000, 4: 81–158

    Article  CAS  Google Scholar 

  164. Liu L C, Risbud S H. Quantum-dot size-distribution analysis and precipitation stages in semiconductor doped glasses. Journal of Applied Physics, 1990, 68(1): 28–32

    Article  CAS  Google Scholar 

  165. Machado T M, Falci R F, Silva I L, et al. Erbium 1.55 µm luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses. Materials Chemistry and Physics, 2019, 224: 73–78

    Article  CAS  Google Scholar 

  166. Machado T M, Falci R F, Andrade G F S, et al. Unprecedented multiphonon vibronic transitions of erbium ions on copper nanoparticle-containing tellurite glasses. Physical Chemistry Chemical Physics, 2020, 22(23): 13118–13122

    Article  CAS  Google Scholar 

  167. Rajaramakrishna R, Saiyasombat C, Anavekar R V, et al. Structure and nonlinear optical studies of Au nanoparticles embedded in lead lanthanum borate glass. Journal of Non-Crystalline Solids, 2014, 406: 107–110

    Article  CAS  Google Scholar 

  168. Rajaramakrishna R, Karuthedath S, Anavekar R V, et al. Nonlinear optical studies of lead lanthanum borate glass doped with Au nanoparticles. Journal of Non-Crystalline Solids, 2012, 358(14): 1667–1672

    Article  CAS  Google Scholar 

  169. Chen F, Dai S, Xu T, et al. Surface-plasmon enhanced ultrafast third-order optical nonlinearities in ellipsoidal gold nanoparticles embedded bismuthate glasses. Chemical Physics Letters, 2011, 514(1–3): 79–82

    Article  CAS  Google Scholar 

  170. Ma R, Qian J, Cui S, et al. Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass. Journal of Luminescence, 2014, 152: 222–225

    Article  CAS  Google Scholar 

  171. Guo Z, Ye S, Liu T, et al. SmF3 doping and heat treatment manipulated Ag species evaluation and efficient energy transfer from Ag nanoclusters to Sm3+ ions in oxyfluoride glass. Journal of Non-Crystalline Solids, 2017, 458: 80–85

    Article  CAS  Google Scholar 

  172. Singh S P, Karmakar B. Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag:bismuth glass nanocomposites. Plasmonics, 2011, 6(3): 457–467

    Article  CAS  Google Scholar 

  173. Venkateswara Rao G, Shashikala H D. Effect of heat treatment on optical, dielectric and mechanical properties of silver nanoparticle embedded CaO—CaF2—P2O5 glass. Journal of Alloys and Compounds, 2015, 622: 108–114

    Article  CAS  Google Scholar 

  174. Swetha B N, Keshavamurthy K. Impact of thermal annealing time on luminescence properties of Eu3+ ions in silver nanoparticles embedded lanthanum sodium borate glasses. Applied Surface Science, 2020, 525: 146505

    Article  CAS  Google Scholar 

  175. Mohammed Danmallam I, Ghoshal S K, Ariffin R, et al. Europium luminescence in silver and gold nanoparticles co-embedded phosphate glasses: Judd—Ofelt calculation. Optical Materials, 2020, 105: 109889

    Article  Google Scholar 

  176. Qiu J, Shirai M, Nakaya T, et al. Space-selective precipitation of metal nanoparticles inside glasses. Applied Physics Letters, 2002, 81(16): 3040–3042

    Article  CAS  Google Scholar 

  177. Qiu J, Jiang X, Zhu C, et al. Manipulation of gold nanoparticles inside transparent materials. Angewandte Chemie International Edition, 2004, 43(17): 2230–2234

    Article  CAS  Google Scholar 

  178. Hu X, Zhao Q, Jiang X, et al. Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass. Solid State Communications, 2006, 138(1): 43–46

    Article  CAS  Google Scholar 

  179. Teng Y, Qian B, Jiang N, et al. Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses. Chemical Physics Letters, 2010, 485(1–3): 91–94

    Article  CAS  Google Scholar 

  180. Almeida J M P, De Boni L, Avansi W, et al. Generation of copper nanoparticles induced by fs-laser irradiation in borosilicate glass. Optics Express, 2012, 20(14): 15106–15113

    Article  CAS  Google Scholar 

  181. Chen S, Akai T, Kadono K, et al. Reversible control of silver nanoparticle generation and dissolution in soda-lime silicate glass through X-ray irradiation and heat treatment. Applied Physics Letters, 2001, 79(22): 3687–3689

    Article  CAS  Google Scholar 

  182. Sheng J, Kadono K, Yazawa T. Nanosized gold clusters formation in selected areas of soda-lime silicate glass. Journal of Non-Crystalline Solids, 2003, 324(3): 295–299

    Article  CAS  Google Scholar 

  183. Valentin E, Bernas H, Ricolleau C, et al. Ion beam “photography”: decoupling nucleation and growth of metal clusters in glass. Physical Review Letters, 2001, 86(1): 99–102

    Article  CAS  Google Scholar 

  184. Farag H K, Marzouk M A. Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses. Journal of Materials Science: Materials in Electronics, 2017, 28(20): 15480–15487

    CAS  Google Scholar 

  185. Asyikin A S, Halimah M K, Latif A A, et al. Physical, structural and optical properties of bio-silica borotellurite glass system doped with samarium oxide nanoparticles. Journal of Non-Crystalline Solids, 2020, 529: 119777

    Article  CAS  Google Scholar 

  186. Orives J R, Viali W R, Magnani M, et al. Incorporation of CdFe2O4—SiO2 nanoparticles in SbPO4—ZnO—PbO glasses by melt-quenching process. Eclética Química Journal, 2018, 43(2): 32–43

    CAS  Google Scholar 

  187. Widanarto W, Sahar M R, Ghoshal S K, et al. Thermal, structural and magnetic properties of zinc-tellurite glasses containing natural ferrite oxide. Materials Letters, 2013, 108: 289–292

    Article  CAS  Google Scholar 

  188. Widanarto W, Sahar M R, Ghoshal S K, et al. Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass. Journal of Magnetism and Magnetic Materials, 2013, 326: 123–128

    Article  CAS  Google Scholar 

  189. Anigrahawati P, Sahar M R, Ghoshal S K. Influence of Fe3O4 nanoparticles on structural, optical and magnetic properties of erbium doped zinc phosphate glass. Materials Chemistry and Physics, 2015, 155: 155–161

    Article  CAS  Google Scholar 

  190. Franco D F, Sant’Ana A C, De Oliveira L F C, et al. The Sb2O3 redox route to obtain copper nanoparticles in glasses with plasmonic properties. Journal of Materials Chemistry C, 2015, 3(15): 3803–3808

    Article  CAS  Google Scholar 

  191. Egorova O N, Semjonov S L, Velmiskin V V, et al. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser. Optics Express, 2014, 22(7): 7632–7637

    Article  CAS  Google Scholar 

  192. Sathi Z M, Zhang J, Luo Y, et al. Improving broadband emission within Bi/Er doped silicate fibres with Yb co-doping. Optical Materials Express, 2015, 5(10): 2096–2105

    Article  CAS  Google Scholar 

  193. Wei T, Chen F, Tian Y, et al. Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 126: 53–58

    Article  CAS  Google Scholar 

  194. Chen D D, Qian Q, Peng M Y, et al. Effect of Ce3+, Dy3+, and Tb3+ additions on the spectroscopic properties of Er3+/Yb3+ codoped tellurite glasses. Physica B: Condensed Matter, 2010, 405(21): 4453–4456

    Article  CAS  Google Scholar 

  195. Li L, Yang Y, Zhou D, et al. Influence of the Eu2+ on the silver aggregates formation in Ag+—Na+ ion-exchanged Eu3+-doped sodium-aluminosilicate glasses. Journal of the American Ceramic Society, 2014, 97(4): 1110–1114

    Article  CAS  Google Scholar 

  196. Worsch C, Büttner M, Schaaf P, et al. Magnetic properties of multicore magnetite nanoparticles prepared by glass crystallization. Journal of Materials Science, 2013, 48(6): 2299–2307

    Article  CAS  Google Scholar 

  197. Harizanova R, Völksch G, Rüssel C. Microstructures formed during devitrification of Na2O·Al2O3·B2O3·SiO2·Fe2O3 glasses. Journal of Materials Science, 2010, 45(5): 1350–1353

    Article  CAS  Google Scholar 

  198. Worsch C, Schaaf P, Harizanova R, et al. Magnetisation effects of multicore magnetite nanoparticles crystallised from a silicate glass. Journal of Materials Science, 2012, 47(15): 5886–5890

    Article  CAS  Google Scholar 

  199. Woltz S, Hiergeist R, Görnert P, et al. Magnetite nanoparticles prepared by the glass crystallization method and their physical properties. Journal of Magnetism and Magnetic Materials, 2006, 298(1): 7–13

    Article  CAS  Google Scholar 

  200. Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102

    Article  CAS  Google Scholar 

  201. Maurer R D. Nucleation and growth in a photosensitive glass. Journal of Applied Physics, 1958, 29(1): 1–8

    Article  CAS  Google Scholar 

  202. Zhang K, Zhou D, Qiu J, et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass. Journal of the American Ceramic Society, 2020, 103(4): 2463–2470

    Article  CAS  Google Scholar 

  203. Manzani D, Almeida J M P, Napoli M, et al. Nonlinear optical properties of tungsten lead-pyrophosphate glasses containing metallic copper nanoparticles. Plasmonics, 2013, 8(4): 1667–1674

    Article  CAS  Google Scholar 

  204. Qiu J, Zhu C, Nakaya T, et al. Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser. Applied Physics Letters, 2001, 79(22): 3567–3569

    Article  CAS  Google Scholar 

  205. Zeng H, Qiu J, Ye Z, et al. Irradiation assisted fabrication of gold nanoparticles-doped glasses. Journal of Crystal Growth, 2004, 267(1–2): 156–160

    Article  CAS  Google Scholar 

  206. Hosono H, Matsunami N, Kudo A, et al. Novel approach for synthesizing Ge fine particles embedded in glass by ion implantation: formation of Ge nanocrystal in SiO2—GeO2 glasses by proton implantation. Applied Physics Letters, 1994, 65(13): 1632–1634

    Article  CAS  Google Scholar 

  207. Hosono H, Kawamura K, Kameshima Y, et al. Nanometer-sized Ge particles in GeO2—SiO2 glasses produced by proton implantation: combined effects of electronic excitation and chemical reaction. Journal of Applied Physics, 1997, 82(9): 4232–4235

    Article  CAS  Google Scholar 

  208. Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 1961, 19(1–2): 35–50

    Article  Google Scholar 

  209. Houk L R, Challa S R, Grayson B, et al. The definition of “critical radius” for a collection of nanoparticles undergoing Ostwald ripening. Langmuir, 2009, 25(19): 11225–11227

    Article  CAS  Google Scholar 

  210. Azlina Y, Azlan M N, Halimah M K, et al. Optical performance of neodymium nanoparticles doped tellurite glasses. Physica B: Condensed Matter, 2020, 577: 411784

    Article  CAS  Google Scholar 

  211. Muhammad Noorazlan A, Mohamed Kamari H, Zulkefly S S, et al. Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system. Journal of Nanomaterials, 2013, 2013: 940917

    Article  Google Scholar 

  212. Halimah M K, Awshah A A, Hamza A M, et al. Effect of neodymium nanoparticles on optical properties of zinc tellurite glass system. Journal of Materials Science: Materials in Electronics, 2020, 31(5): 3785–3794

    CAS  Google Scholar 

  213. Orives J R, Viali W R, Santagneli S H, et al. Phosphate glasses via coacervation route containing CdFe2O4 nanoparticles: structural, optical and magnetic characterization. Dalton transactions, 2018, 47(16): 5771–5779

    Article  CAS  Google Scholar 

  214. Orives J R, Pichon B P, Mertz D, et al. Phosphate glasses containing monodisperse Fe3−δO4@SiO2 stellate nanoparticles obtained by melt-quenching process. Ceramics International, 2020, 46(8): 12120–12127

    Article  CAS  Google Scholar 

  215. Hench L L, West J K. The sol-gel process. Chemical Reviews, 1990, 90(1): 33–72

    Article  CAS  Google Scholar 

  216. Graham T. On the properties of silicic acid and other analogous colloidal substances. Journal of the Chemical Society, 1864, 17: 318–327

    Article  Google Scholar 

  217. Dislich H. New routes to multicomponent oxide glasses. Angewandte Chemie International Edition, 1971, 10(6): 363–370

    Article  CAS  Google Scholar 

  218. Yoldas B E. Monolithic glass formation by chemical polymerization. Journal of Materials Science, 1979, 14(8): 1843–1849

    Article  CAS  Google Scholar 

  219. Razdobreev I, El Hamzaoui H, Ivanov V Y, et al. Optical spectroscopy of bismuth-doped pure silica fiber preform. Optics Letters, 2010, 35(9): 1341–1343

    Article  CAS  Google Scholar 

  220. Vallet-Regí M. Ceramics for medical applications. Journal of the Chemical Society — Dalton Transactions: Inorganic Chemistry, 2001, 2(2): 97–108

    Article  Google Scholar 

  221. Kaur G, Pickrell G, Sriranganathan N, et al. Review and the state of the art: sol-gel and melt quenched bioactive glasses for tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 104(6): 1248–1275

    Article  CAS  Google Scholar 

  222. El Hamzaoui H, Bigot L, Bouwmans G, et al. From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route. Optical Materials Express, 2011, 1(2): 234–242

    Article  CAS  Google Scholar 

  223. Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. New York, USA: Academic Press, 1990

    Google Scholar 

  224. Zarzycki J, Prassas M, Phalippou J. Synthesis of glasses from gels: the problem of monolithic gels. Journal of Materials Science, 1982, 17(11): 3371–3379

    Article  CAS  Google Scholar 

  225. Ulrich D R. Prospects of sol-gel processes. Journal of Non-Crystalline Solids, 1988, 100(1–3): 174–193

    Article  CAS  Google Scholar 

  226. Kirkbir F, Murata H, Meyers D, et al. Drying and sintering of sol-gel derived large SiO2 monoliths. Journal of Sol-Gel Science and Technology, 1996, 6(3): 203–217

    Article  CAS  Google Scholar 

  227. Kajihara K. Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses. Journal of Asian Ceramic Societies, 2013, 1(2): 121–133

    Article  Google Scholar 

  228. Adachi T, Sakka S. Preparation of monolithic silica gel and glass by the sol-gel method using N, N-dimethylformamide. Journal of Materials Science, 1987, 22(12): 4407–4410

    Article  CAS  Google Scholar 

  229. Chan J B, Jonas J. Effect of various amide additives on the tetramethoxysilane sol-gel process. Journal of Non-Crystalline Solids, 1990, 126(1–2): 79–86

    Article  CAS  Google Scholar 

  230. Kirkbir F, Murata H, Meyers D, et al. Drying of large monolithic aerogels between atmospheric and supercritical pressures. Journal of Sol-Gel Science and Technology, 1998, 13(1/3): 311–316

    Article  CAS  Google Scholar 

  231. Iler R K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. New York, USA: John Wiley and Sons Ltd., 1979

    Google Scholar 

  232. Yamane M, Aso S, Okano S, et al. Low temperature synthesis of a monolithic silica glass by the pyrolysis of a silica gel. Journal of Materials Science, 1979, 14(3): 607–611

    Article  CAS  Google Scholar 

  233. Hæreid S, Einarsrud M A, Scherer G W. Mechanical strengthening of TMOS-based alcogels by aging in silane solutions. Journal of Sol-Gel Science and Technology, 1994, 3: 199–204

    Article  Google Scholar 

  234. Kawaguchi T, Hishikura H, Iura J, et al. Monolithic dried gels and silica glass prepared by the sol-gel process. Journal of Non-Crystalline Solids, 1984, 63(1–2): 61–69

    Article  CAS  Google Scholar 

  235. Sarkar A, Chaudhuri S R, Wang S, et al. Drying of alkoxide gels-observation of an alternate phenomenology. Journal of Sol-Gel Science and Technology, 1994, 2(1–3): 865–870

    Article  CAS  Google Scholar 

  236. Murata H, Meyers D E, Kirkbir F, et al. Drying and sintering of bulk silica gels. Journal of Sol-Gel Science and Technology, 1997, 8(1–3): 397–402

    Article  CAS  Google Scholar 

  237. Scherer G W, Smith D M. Cavitation during drying of a gel. Journal of Non-Crystalline Solids, 1995, 189(3): 197–211

    Article  CAS  Google Scholar 

  238. Smith D M, Stein D, Anderson J M, et al. Preparation of low-density xerogels at ambient pressure. Journal of Non-Crystalline Solids, 1995, 186: 104–112

    Article  CAS  Google Scholar 

  239. Susa K, Matsuyama I, Satoh S, et al. Sol-gel derived Ge-doped silica glass for optical fiber application: I. Preparation of gel and glass and their characterization. Journal of Non-Crystalline Solids, 1990, 119(1): 21–28

    Article  CAS  Google Scholar 

  240. Susa K, Matsuyama I, Satoh S. Sol-gel derived Ge-doped silica glass for optical fiber application. II. Excess optical loss. Journal of Non-Crystalline Solids, 1991, 128(2): 118–125

    Article  CAS  Google Scholar 

  241. Breitscheidel B, Zieder J, Schubert U. Metal complexes in inorganic matrices. 7. Nanometer-sized, uniform metal particles in a silica matrix by sol-gel processing of metal complexes. Chemistry of Materials, 1991, 3(3): 559–566

    Article  CAS  Google Scholar 

  242. Lembacher C, Schubert U. Nanosized platinum particles by solgel processing of tethered metal complexes: influence of the precursors and the organic group removal method on the particle size. New Journal of Chemistry, 1998, 22(7): 721–724

    Article  CAS  Google Scholar 

  243. Trimmel G, Lembacher C, Kickelbick G, et al. Sol-gel processing of alkoxysilyl-substituted nickel complexes for the preparation of highly dispersed nickel in silica. New Journal of Chemistry, 2002, 26(6): 759–765

    Article  CAS  Google Scholar 

  244. Lukehart C M, Milne S B, Stock S R. Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors. Chemistry of Materials, 1998, 10(3): 903–908

    Article  CAS  Google Scholar 

  245. Carpenter J P, Lukehart C M, Stock S R, et al. Formation of a nanocomposite containing particles of Co3C from a single-source precursor bound to a silica xerogel host matrix. Chemistry of Materials, 1995, 7(1): 201–205

    Article  CAS  Google Scholar 

  246. Carpenter J P, Lukehart C M, Henderson D O, et al. Formation of crystalline germanium nanoclusters in a silica xerogel matrix from an organogermanium precursor. Chemistry of Materials, 1996, 8(6): 1268–1274

    Article  CAS  Google Scholar 

  247. Carpenter J P, Lukehart C M, Milne S B, et al. Organometallic compounds as single-source precursors to nanocomposite materials: an overview. Journal of Organometallic Chemistry, 1998, 557(1): 121–130

    Article  CAS  Google Scholar 

  248. Mathieu H, Richard T, Allègre J, et al. Quantum confinement effects of CdS nanocrystals in a sodium borosilicate glass prepared by the sol-gel process. Journal of Applied Physics, 1995, 77(1): 287–293

    Article  CAS  Google Scholar 

  249. Zhong J, Ma X, Lu H, et al. Preparation and optical properties of sodium borosilicate glasses containing Sb nanoparticles. Journal of Alloys and Compounds, 2014, 607: 177–182

    Article  CAS  Google Scholar 

  250. Zhong J, Xiang W, Zhao H, et al. Synthesis, characterization, and third-order nonlinear optical properties of copper quantum dots embedded in sodium borosilicate glass. Journal of Alloys and Compounds, 2012, 537: 269–274

    Article  CAS  Google Scholar 

  251. Pei L, Liang X, Cai W, et al. Photocatalytic activity in monodisperse In2O3 nanocrystals incorporated into transparent silica glassy matrix. Journal of Alloys and Compounds, 2015, 626: 131–135

    Article  CAS  Google Scholar 

  252. Gao H, Xiang W, Ma X, et al. Sol-gel synthesis and third-order optical nonlinearity of Au nanoparticles doped monolithic glass. Gold Bulletin, 2015, 48(3–4): 153–159

    Article  Google Scholar 

  253. Zhong J, Xiang W. Sol-gel synthesis and third-order nonlinear optical properties of Cu3.8Ni nanoparticles doped glass. Journal of Non-Crystalline Solids, 2017, 462: 17–22

    Article  CAS  Google Scholar 

  254. Huang Y, Xiang W, Lin S, et al. The synthesis of bimetallic gold plus nickel nanoparticles dispersed in a glass host and behavior-enhanced optical nonlinearities. Journal of Non-Crystalline Solids, 2017, 459: 142–149

    Article  CAS  Google Scholar 

  255. Zhang Y, Jin Y, He M, et al. Optical properties of bimetallic Au—Cu nanocrystals embedded in glass. Materials Research Bulletin, 2018, 98: 94–102

    Article  CAS  Google Scholar 

  256. Le Rouge A, El Hamzaoui H, Capoen B, et al. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass. Materials Research Express, 2015, 2(5): 055009

    Article  Google Scholar 

  257. Campos-Zuñiga E E, Alonso-Lemus I L, Agarwal V, et al. Solgel synthesis for stable green emission in samarium doped borosilicate glasses. Ceramics International, 2019, 45(18): 24052–24059

    Article  Google Scholar 

  258. Schubert U, Amberg-Schwab S, Breitscheidel B. Metal complexes in inorganic matrices. 4. Small metal particles in palladium—silica composites by sol-gel processing of metal complexes. Chemistry of Materials, 1989, 1(6): 576–578

    Article  CAS  Google Scholar 

  259. Schubert U. Metal oxide/silica and metal/silica nanocomposites from organofunctional single-source sol-gel precursors. Advanced Engineering Materials, 2004, 6(3): 173–176

    Article  CAS  Google Scholar 

  260. Schubert U. Preparation of metal oxide or metal nanoparticles in silica via metal coordination to organofunctional trialkoxysilanes. Polymer International, 2009, 58(3): 317–322

    Article  CAS  Google Scholar 

  261. Trimmel G, Schubert U. Sol-gel processing of tethered metal complexes: influence of the metal and the complexing alkoxysilane on the texture of the obtained silica gels. Journal of Non-Crystalline Solids, 2001, 296(3): 188–200

    Article  CAS  Google Scholar 

  262. Moerke W, Lamber R, Schubert U, et al. Metal complexes in inorganic matrices. 11. Composition of highly dispersed bimetallic Ni, Pd alloy particles prepared by sol-gel processing: electron microscopy and FMR study. Chemistry of Materials, 1994, 6(10): 1659–1666

    Article  CAS  Google Scholar 

  263. Kaiser A, Görsmann C, Schubert U. Influence of the metal complexation on size and composition of Cu/Ni nano-particles prepared by sol-gel processing. Journal of Sol-Gel Science and Technology, 1997, 8(1–3): 795–799

    Article  CAS  Google Scholar 

  264. Malenovska M, Neouze M A, Schubert U, et al. Multi-component hybrid organic—inorganic particles with highly dispersed silver nanoparticles in the external shell. Dalton Transactions, 2008(34): 4647–4651

  265. Reisfeld R. Prospects of sol-gel technology towards luminescent materials. Optical Materials, 2001, 16(1–2): 223707

    Google Scholar 

  266. Yang G, Cheng S, Li C, et al. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy. Journal of Applied Physics, 2014, 116(22): 1–6

    Article  Google Scholar 

  267. Yanes A C, Santana-Alonso A, Méndez-Ramos J, et al. Novel sol-gel nano-glass-ceramics comprising Ln3+-doped YF3 nanocrystals: structure and high efficient UV up-conversion. Advanced Functional Materials, 2011, 21(16): 3136–3142

    Article  CAS  Google Scholar 

  268. Zhang M, Fan H, Xi B, et al. Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles. The Journal of Physical Chemistry C, 2007, 111(18): 6652–6657

    Article  CAS  Google Scholar 

  269. Wang G, Qin W, Zhang J, et al. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles. The Journal of Physical Chemistry C, 2008, 112(32): 12161–12167

    Article  CAS  Google Scholar 

  270. Kalwarczyk E, Kabaciński P, Kardaś T M, et al. A Seedless method for gold nanoparticle growth inside a silica matrix: fabrication of materials capable of third-harmonic generation in the near-infrared. ChemPlusChem, 2019, 84(5): 525–533

    Article  CAS  Google Scholar 

  271. Melnikov P, Arkhangelsky I V, Nascimento V A, et al. Thermolysis mechanism of samarium nitrate hexahydrate. Journal of Thermal Analysis and Calorimetry, 2014, 118(3): 1537–1541

    Article  CAS  Google Scholar 

  272. Gaddam A, Fernandes H R, Tulyaganov D U, et al. The structural role of lanthanum oxide in silicate glasses. Journal of Non-Crystalline Solids, 2019, 505: 18–27

    Article  CAS  Google Scholar 

  273. Harper C A. Handbook of Ceramics, Glasses, and Diamonds. New York, USA: McGraw-Hill, 2001

    Google Scholar 

  274. Pope E J A, Mackenzie J D. Nd-doped silica glass I: structural evolution in the sol-gel state. Journal of Non-Crystalline Solids, 1988, 106(1–3): 236–241

    Article  CAS  Google Scholar 

  275. Campostrini R, Carturan G, Ferrari M, et al. Luminescence of Eu3+ ions during thermal densification of SiO2 gel. Journal of Materials Research, 1992, 7(3): 745–753

    Article  CAS  Google Scholar 

  276. Pope E J A, Mackenzie J D. Sol-gel processing of neodymiansilica glass. Journal of the American Ceramic Society, 1993, 76(5): 1325–1328

    Article  CAS  Google Scholar 

  277. Chakrabarti S, Sahu J, Chakraborty M, et al. Monophasic silica glasses with large neodymia concentration. Journal of Non-Crystalline Solids, 1994, 180(1): 96–101

    Article  CAS  Google Scholar 

  278. Monteil A, Chaussedent S, Alombert-Goget G, et al. Clustering of rare earth in glasses, aluminum effect: experiments and modeling. Journal of Non-Crystalline Solids, 2004, 348: 44–50

    Article  CAS  Google Scholar 

  279. Langlet M, Coutier C, Meffre W, et al. Microstructural and spectroscopic study of sol-gel derived Nd-doped silica glasses. Journal of Luminescence, 2002, 96(2–4): 295–309

    Article  CAS  Google Scholar 

  280. Sckerl M W, Guldberg-Kjaer S, Rysholt Poulsen M, et al. Precipitate coarsening and self organization in erbium-doped silica. Physical Review B: Condensed Matter, 1999, 59(21): 13494–13497

    Article  CAS  Google Scholar 

  281. Stepanov A L. Chapter 4: Laser annealing of metal nanoparticles synthesized in glasses by ion implantation. Glass Nanocomposites Synthesis, Properties and Applications, 2016: 115–130

  282. De Marchi G, Mattei G, Mazzoldi P, et al. Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere. Journal of Applied Physics, 2002, 92(8): 4249–4254

    Article  CAS  Google Scholar 

  283. Srivastava S K, Gangopadhyay P, Amirthapandian S, et al. Effects of high-energy Si ion-irradiations on optical responses of Ag metal nanoparticles in a SiO2 matrix. Chemical Physics Letters, 2014, 607: 100–104

    Article  CAS  Google Scholar 

  284. Liu Q, He X, Zhou X, et al. Third-order nonlinearity in Agnanoparticles embedded 56GeS2—24Ga2S3—20KBr chalcohalide glasses. Journal of Non-Crystalline Solids, 2011, 357(11–13): 2320–2323

    Article  CAS  Google Scholar 

  285. Vytykacova S, Svecova B, Nekvindova P, et al. The formation of silver metal nanoparticles by ion implantation in silicate glasses. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 371: 245–250

    Article  CAS  Google Scholar 

  286. Zhang B, Sato R, Oyoshi K, et al. Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 447: 38–42

    Article  CAS  Google Scholar 

  287. Herrera A, Balzaretti N M. Effect of gold nanoparticles in broadband near-infrared emission of Pr3+ doped B2O3—PbO—Bi2O3—GeO2 glass. Journal of Luminescence, 2017, 181: 147–152

    Article  CAS  Google Scholar 

  288. Stepanov A L, Galyautdinov M F, Evlyukhin A B, et al. Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation. Applied Physics A: Materials Science & Processing, 2013, 111(1): 261–264

    Article  CAS  Google Scholar 

  289. Ghosh B, Chakraborty P, Singh B P, et al. Enhanced nonlinear optical responses in metal—glass nanocomposites. Applied Surface Science, 2009, 256(2): 389–394

    Article  CAS  Google Scholar 

  290. Wang Y H, Wang Y M, Lu J D, et al. Nonlinear optical properties of Cu nanoclusters by ion implantation in silicate glass. Optics Communications, 2010, 283(3): 486–489

    Article  CAS  Google Scholar 

  291. Xiao X H, Ren F, Wang J B, et al. Formation of aligned silver nanoparticles by ion implantation. Materials Letters, 2007, 61(22): 4435–4437

    Article  CAS  Google Scholar 

  292. Shen Y, Qi T, Qiao Y, et al. The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2. Applied Surface Science, 2016, 363: 310–317

    Article  CAS  Google Scholar 

  293. Wang J, Jia G, Zhang B, et al. Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: synthesis of the modified Ag nanoparticles. Journal of Applied Physics, 2013, 113(3): 034304

    Article  Google Scholar 

  294. Nistor L C, van Landuyt J, Barton J B, et al. Colloid size distribution in ion implanted glass. Journal of Non-Crystalline Solids, 1993, 162(3): 217–224

    Article  CAS  Google Scholar 

  295. Stepanov A L, Popok V N. Nanostructuring of silicate glass under low-energy Ag-ion implantation. Surface Science, 2004, 566–568: 1250–1254

    Article  Google Scholar 

  296. Gnaser H, Brodyanski A, Reuscher B. Focused ion beam implantation of Ga in Si and Ge: fluence-dependent retention and surface morphology. Surface and Interface Analysis, 2008, 40(11): 1415–1422

    Article  CAS  Google Scholar 

  297. Stanek S, Nekvindova P, Svecova B, et al. The influence of silver-ion doping using ion implantation on the luminescence properties of Er—Yb silicate glasses. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 371: 350–354

    Article  CAS  Google Scholar 

  298. Fukumi K, Chayahara A, Kadono K, et al. Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties. Journal of Applied Physics, 1994, 75(6): 3075–3080

    Article  CAS  Google Scholar 

  299. Yanes A C, del-Castillo J. Enhanced emission via energy transfer in RE co-doped SiO2—KYF4 nano-glass-ceramics for white LEDs. Journal of Alloys and Compounds, 2016, 658: 170–176

    Article  CAS  Google Scholar 

  300. Wang Y H, Liu F, Cheng H, et al. Third order non-linear optical response of Cu nanoclusters by ion implantation in silicate glass under 532 and 1064 nm laser excitations. Materials Research Innovations, 2014, 18(4): 241–244

    Article  CAS  Google Scholar 

  301. Gonella F, Mattei G, Mazzoldi P, et al. Au—Cu alloy nanoclusters in silica formed by ion implantation and annealing in reducing or oxidizing atmosphere. Applied Physics Letters, 1999, 75(1): 55–57

    Article  CAS  Google Scholar 

  302. Cesca T, Calvelli P, Battaglin G, et al. Local-field enhancement effect on the nonlinear optical response of gold—silver nanoplanets. Optics Express, 2012, 20(4): 4537–4547

    Article  CAS  Google Scholar 

  303. Mattei G, Marchi G D, Maurizio C, et al. Chemical- or radiation-assisted selective dealloying in bimetallic nanoclusters. Physical Review Letters, 2003, 90(8): 085502

    Article  CAS  Google Scholar 

  304. Liau Z L, Tsaur B Y, Mauer J W. Influence of atomic mixing and preferential sputtering on depth profiles and interfaces. Journal of Vacuum Science and Technology, 1979, 16(2): 121–127

    Article  CAS  Google Scholar 

  305. Yamada T, Takano A, Sugita K, et al. Effect of dual implantation with Ag and Ni ions on the optical absorption of silica glass. Transactions of the Materials Research Society of Japan, 2020, 45(4): 127–130

    Article  CAS  Google Scholar 

  306. Cai G X, Ren F, Xiao X H, et al. Morphology control and optical absorption properties of Ag nanoparticles by ion implantation. Journal of Materials Science and Technology, 2009, 25: 669–672

    CAS  Google Scholar 

  307. Bourgoin J C, Corbett J W. Enhanced diffusion mechanisms. Radiation Effects, 1978, 36(3–4): 157–188

    Article  CAS  Google Scholar 

  308. Jia G, Xu R, Mu X, et al. Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution. ACS Applied Materials & Interfaces, 2013, 5(24): 13055–13062

    Article  CAS  Google Scholar 

  309. Wang J, Zhang L, Zhang X, et al. Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions. Journal of Alloys and Compounds, 2013, 549: 231–237

    Article  CAS  Google Scholar 

  310. Voorhees P W. The theory of Ostwald ripening. Journal of Statistical Physics, 1985, 38(1–2): 231–252

    Article  Google Scholar 

  311. Fan H J, Gösele U, Zacharias M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small, 2007, 3(10): 1660–1671

    Article  CAS  Google Scholar 

  312. Xu Y H, Wang J P. Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation. Advanced Materials, 2008, 20(5): 994–999

    Article  CAS  Google Scholar 

  313. Heggen M, Oezaslan M, Houben L, et al. Formation and analysis of core—shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts. The Journal of Physical Chemistry C, 2012, 116(36): 19073–19083

    Article  CAS  Google Scholar 

  314. Amekura H, Yoshitake M, Plaksin O A, et al. Implantation-induced nonequilibrium reaction between Zn ions of 60 keV and SiO2 target. Applied Physics Letters, 2007, 91(6): 063113

    Article  Google Scholar 

  315. Wang J, Jia G Y, Zhang B, et al. Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation. Journal of Applied Physics, 2013, 113: 1–8

    Google Scholar 

  316. Peña O, Pal U, Rodríguez-Fernández L, et al. Formation of Au—Ag core—shell nanostructures in silica matrix by sequential ion implantation. The Journal of Physical Chemistry C, 2009, 113(6): 2296–2300

    Article  Google Scholar 

  317. Torres-Torres C, López-Suárez A, Can-Uc B, et al. Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica. Nanotechnology, 2015, 26(29): 295701

    Article  CAS  Google Scholar 

  318. Yang X C, Li L L, Huang M, et al. In situ synthesis of Ag—Cu bimetallic nanoparticles in silicate glass by a two-step ion-exchange route. Journal of Non-Crystalline Solids, 2011, 357(11–13): 2306–2308

    Article  CAS  Google Scholar 

  319. Obraztsov P A, Nashchekin A V, Nikonorov N V, et al. Formation of silver nanoparticles on the silicate glass surface after ion exchange. Physics of the Solid State, 2013, 55(6): 1272–1278

    Article  CAS  Google Scholar 

  320. Garfinkel H M. Ion-exchange equilibria between glass and molten salts. The Journal of Physical Chemistry, 1968, 72(12): 4175–4181

    Article  CAS  Google Scholar 

  321. Ramaswamy R V, Srivastava R. Ion-exchanged glass waveguides: a review. Journal of Lightwave Technology, 1988, 6(6): 984–1000

    Article  CAS  Google Scholar 

  322. Crank J. The Mathematics of Diffusion. Oxford, UK: Clarendon, 1956

    Google Scholar 

  323. Kirkwood J G, Oppenheim J. Chemical Thermodynamics. New York, USA: McGraw Hill, 1961

    Google Scholar 

  324. Zhao J, Zhu J, Yang Z, et al. Selective preparation of Ag species on photoluminescence of Sm3+ in borosilicate glass via Ag+—Na+ ion exchange. Journal of the American Ceramic Society, 2020, 103(2): 955–964

    Article  CAS  Google Scholar 

  325. Zhao J, Yang Z, Yu C, et al. Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from moleculelike Ag nano-clusters to Eu3+ ions. Chemical Engineering Journal, 2018, 341: 175–186

    Article  CAS  Google Scholar 

  326. Karvonen L, Rönn J, Kujala S, et al. High non-resonant third-order optical nonlinearity of Ag—glass nanocomposite fabricated by two-step ion exchange. Optical Materials, 2013, 36(2): 328–332

    Article  CAS  Google Scholar 

  327. Mathpal M C, Kumar P, Kumar S, et al. Opacity and plasmonic properties of Ag embedded glass based metamaterials. RSC Advances, 2015, 5(17): 12555–12562

    Article  CAS  Google Scholar 

  328. Kumar P, Mathpal M C, Tripathi A K, et al. Plasmonic resonance of Ag nanoclusters diffused in soda-lime glasses. Physical Chemistry Chemical Physics, 2015, 17(14): 8596–8603

    Article  CAS  Google Scholar 

  329. Simo A, Polte J, Pfänder N, et al. Formation mechanism of silver nanoparticles stabilized in glassy matrices. Journal of the American Chemical Society, 2012, 134(45): 18824–18833

    Article  CAS  Google Scholar 

  330. Sheng J. Growth of silver nanoclusters embedded in soda-lime silicate glasses. International Journal of Hydrogen Energy, 2009, 34(5): 2471–2474

    Article  CAS  Google Scholar 

  331. Kumar P, Mathpal M C, Hamad S, et al. Cu nanoclusters in ion exchanged soda-lime glass: study of SPR and nonlinear optical behavior for photonics. Applied Materials Today, 2019, 15: 323–334

    Article  CAS  Google Scholar 

  332. Marchi G, Caccavale F, Gonella F, et al. Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere. Applied Physics A: Materials Science & Processing, 1996, 63(4): 403–407

    Article  Google Scholar 

  333. Rahman A, Mariotto G, Cattaruzza E, et al. Thermal annealing and laser-induced mechanisms in controlling the size and size-distribution of silver nanoparticles in Ag+—Na+ ion-exchanged silicate glasses. Journal of Non-Crystalline Solids, 2021, 563: 120815

    Article  CAS  Google Scholar 

  334. Zhang J, Dong W, Sheng J, et al. Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation. Journal of Crystal Growth, 2008, 310(1): 234–239

    Article  CAS  Google Scholar 

  335. Sharma A. Energetic argon beam stimulated growth of plasmonic silver nanoparticles in Ag+-exchanged soda glass: a study on the structural, optical, photoluminescence and electrical behavior. Materials Science and Engineering B, 2021, 263: 1–10

    Google Scholar 

  336. Hofmeister H, Thiel S, Dubiel M, et al. Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation. Applied Physics Letters, 1997, 70(13): 1694–1696

    Article  CAS  Google Scholar 

  337. Rahman A, Giarola M, Cattaruzza E, et al. Raman microspectroscopy investigation of Ag ion-exchanged glass layers. Journal of Nanoscience and Nanotechnology, 2012, 12(11): 8573–8579

    Article  CAS  Google Scholar 

  338. Quaranta A, Rahman A, Mariotto G, et al. Spectroscopic investigation of structural rearrangements in silver ion-exchanged silicate glasses. The Journal of Physical Chemistry C, 2012, 116(5): 3757–3764

    Article  CAS  Google Scholar 

  339. Lenoir M, Grandjean A, Poissonnet S, et al. Quantitation of sulfate solubility in borosilicate glasses using Raman spectroscopy. Journal of Non-Crystalline Solids, 2009, 355(28–30): 1468–1473

    Article  CAS  Google Scholar 

  340. Mysen B O, Frantz J D. Silicate melts at magmatic temperatures: in-situ structure determination to 1651 °C and effect of temperature and bulk composition on the mixing behavior of structural units. Contributions to Mineralogy and Petrology, 1994, 117(1): 1–14

    Article  CAS  Google Scholar 

  341. Jansen M. Homoatomic d10—d10 interactions: their effects on structure and chemical and physical properties. Angewandte Chemie International Edition, 1987, 26(11): 1098–1110

    Article  Google Scholar 

  342. Gonella F, Quaranta A. Stress-induced birefringence in silver-diffused glass waveguides. Journal of Modern Optics, 1992, 39(7): 1401–1405

    Article  CAS  Google Scholar 

  343. Araujo R. Colorless glasses containing ion-exchanged silver. Applied Optics, 1992, 31(25): 5221–5224

    Article  CAS  Google Scholar 

  344. Belharouak I, Weill F, Parent C, et al. Silver particles in glasses of the ‘Ag2O—ZnO—P2O5’ system. Journal of Non-Crystalline Solids, 2001, 293–295: 649–656

    Article  Google Scholar 

  345. Bromann K, Félix C, Brune H, et al. Controlled deposition of size-selected silver nanoclusters. Science, 1996, 274(5289): 956–958

    Article  CAS  Google Scholar 

  346. Bastús N G, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir, 2011, 27(17): 11098–11105

    Article  Google Scholar 

  347. Takesue M, Tomura T, Yamada M, et al. Size of elementary clusters and process period in silver nanoparticle formation. Journal of the American Chemical Society, 2011, 133(36): 14164–14167

    Article  CAS  Google Scholar 

  348. Ye S, Guo Z, Wang H, et al. Evolution of Ag species and molecular-like Ag cluster sensitized Eu3+ emission in oxyfluoride glass for tunable light emitting. Journal of Alloys and Compounds, 2016, 685: 891–895

    Article  CAS  Google Scholar 

  349. Chen Y, Karvonen L, Säynätjoki A, et al. Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application. Optical Materials Express, 2011, 1(2): 164–172

    Article  CAS  Google Scholar 

  350. Berneschi S, Righini G C, Pelli S. Towards a glass new world: the role of ion-exchange in modern technology. Applied Sciences, 2021, 11(10): 4610

    Article  CAS  Google Scholar 

  351. Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition. Nature, 2001, 410(6825): 259–267

    Article  CAS  Google Scholar 

  352. Wackerow S, Seifert G, Abdolvand A. Homogenous silver-doped nanocomposite glass. Optical Materials Express, 2011, 1(7): 1224–1231

    Article  CAS  Google Scholar 

  353. Sgibnev Y, Asamoah B, Nikonorov N, et al. Tunable photoluminescence of silver molecular clusters formed in Na+—Ag+ ion-exchanged antimony-doped photo-thermo-refractive glass matrix. Journal of Luminescence, 2020, 226: 117411

    Article  CAS  Google Scholar 

  354. Lumeau J, Zanotto E D. A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass. International Materials Reviews, 2017, 62(6): 348–366

    Article  CAS  Google Scholar 

  355. Nikonorov N V, Panysheva E I, Tunimanova I V, et al. Influence of glass composition on the refractive index change upon photothermoinduced crystallization. Glass Physics and Chemistry, 2001, 27(3): 241–249

    Article  CAS  Google Scholar 

  356. Jiao Q, Yu X, Xu X, et al. Relationship between Eu3+ reduction and glass polymeric structure in Al2O3-modified borate glasses under air atmosphere. Journal of Solid State Chemistry, 2013, 202: 65–69

    Article  CAS  Google Scholar 

  357. Zhang Q, Liu X, Qiao Y, et al. Reduction of Eu3+ to Eu2+ in Eu-doped high silica glass prepared in air atmosphere. Optical Materials, 2010, 32(3): 427–431

    Article  CAS  Google Scholar 

  358. Manikandan D, Mohan S, Magudapathy P, et al. Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study. Physica B: Condensed Matter, 2003, 325: 86–91

    Article  CAS  Google Scholar 

  359. Chervinskii S, Sevriuk V, Reduto I, et al. Formation and 2D-patterning of silver nanoisland film using thermal poling and out-diffusion from glass. Journal of Applied Physics, 2013, 114(22): 224301

    Article  Google Scholar 

  360. Tite T, Ollier N, Sow M C, et al. Ag nanoparticles in soda-lime glass grown by continuous wave laser irradiation as an efficient SERS platform for pesticides detection. Sensors and Actuators B: Chemical, 2017, 242: 127–131

    Article  CAS  Google Scholar 

  361. Goutaland F, Sow M, Ollier N, et al. Growth of highly concentrated silver nanoparticles and nanoholes in silver-exchanged glass by ultraviolet continuous wave laser exposure. Optical Materials Express, 2012, 2(4): 350–357

    Article  CAS  Google Scholar 

  362. Goutaland F, Colombier J P, Sow M C, et al. Laser-induced periodic alignment of Ag nanoparticles in soda-lime glass. Optics Express, 2013, 21(26): 31789–31799

    Article  CAS  Google Scholar 

  363. Niry M D, Mostafavi-Amjad J, Khalesifard H R, et al. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam. Journal of Applied Physics, 2012, 111(3): 033111

    Article  Google Scholar 

  364. Babich E, Kaasik V, Redkov A, et al. SERS-active pattern in silver-ion-exchanged glass drawn by infrared nanosecond laser. Nanomaterials, 2020, 10(9): 1849

    Article  CAS  Google Scholar 

  365. Wackerow S, Abdolvand A. Laser-assisted one-step fabrication of homogeneous glass—silver composite. Applied Physics A: Materials Science & Processing, 2012, 109(1): 45–49

    Article  CAS  Google Scholar 

  366. Wackerow S, Abdolvand A. Generation of silver nanoparticles with controlled size and spatial distribution by pulsed laser irradiation of silver ion-doped glass. Optics Express, 2014, 22(5): 5076–5085

    Article  Google Scholar 

  367. Zhang J, Dong W, Qiao L, et al. Silver nanocluster formation in soda-lime silicate glass by X-ray irradiation and annealing. Journal of Crystal Growth, 2007, 305(1): 278–284

    Article  CAS  Google Scholar 

  368. Sonal, Sharma A, Aggarwal S. Optical investigation of soda lime glass with buried silver nanoparticles synthesised by ion implantation. Journal of Non-Crystalline Solids, 2018, 485: 57–65

    Article  CAS  Google Scholar 

  369. Gangopadhyay P, Magudapathy P, Kesavamoorthy R, et al. Growth of silver nanoclusters embedded in soda glass matrix. Chemical Physics Letters, 2004, 388(4–6): 416–421

    Article  CAS  Google Scholar 

  370. Gangopadhyay P, Magudapathy P, Srivastava S K, et al. Effects of argon ion irradiation on nucleation and growth of silver nanoparticles in a soda-glass matrix. AIP Advances, 2011, 1(3): 032112

    Article  Google Scholar 

  371. Véron O, Blondeau J P, Meneses D D S, et al. Characterization of silver or copper nanoparticles embedded in soda-lime glass after a staining process. Surface and Coatings Technology, 2013, 227: 48–57

    Article  Google Scholar 

  372. Zhang X, Luo W, Wang L J, et al. Third-order nonlinear optical vitreous material derived from mesoporous silica incorporated with Au nanoparticles. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(34): 6966–6970

    Article  CAS  Google Scholar 

  373. Hirasawa M, Shirakawa H, Hamamura H, et al. Growth mechanism of nanoparticles prepared by radio frequency sputtering. Journal of Applied Physics, 1997, 82(3): 1404–1407

    Article  CAS  Google Scholar 

  374. Cattaruzza E, Battaglin G, Canton P, et al. Structural and physical properties of cobalt nanocluster composite glasses. Journal of Non-Crystalline Solids, 2004, 336(2): 148–152

    Article  CAS  Google Scholar 

  375. Chou Y J, Lin S H, Shih C J, et al. The effect of Ag dopants on the bioactivity and antibacterial properties of one-step synthesized Ag-containing mesoporous bioactive glasses. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 10001–10007

    Article  CAS  Google Scholar 

  376. Palgrave R G, Parkin I P. Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films. Journal of the American Chemical Society, 2006, 128(5): 1587–1597

    Article  CAS  Google Scholar 

  377. Delgado J, Vilarigues M, Ruivo A, et al. Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar, Portugal. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(20): 2383–2388

    Article  CAS  Google Scholar 

  378. Jiménez J A, Lysenko S, Zhang G, et al. Optical characterization of Ag nanoparticles embedded in aluminophosphate glass. Journal of Electronic Materials, 2007, 36(7): 812–820

    Article  Google Scholar 

  379. Liu Y F, Liebenberg D H. Electromagnetic radio frequency heating in the pulsed electric current sintering (PECS) process. MRS Communications, 2017, 7(2): 266–271

    Article  CAS  Google Scholar 

  380. Cramer C L, McMurray J W, Lance M J, et al. Reaction-bond composite synthesis of SiC—TiB2 by spark plasma sintering/field-assisted sintering technology (SPS/FAST). Journal of the European Ceramic Society, 2020, 40(4): 988–995

    Article  CAS  Google Scholar 

  381. Weston N S, Thomas B, Jackson M. Processing metal powders via field assisted sintering technology (FAST): a critical review. Materials Science and Technology, 2019, 35(11): 1306–1328

    Article  CAS  Google Scholar 

  382. Gan H, Wang C B, Shen Q, et al. Preparation of La2NiMnO6 double-perovskite ceramics by plasma activated sintering. Journal of Inorganic Materials, 2019, 34(5): 541–545

    Article  Google Scholar 

  383. Alaniz J E, Dupuy A D, Kodera Y, et al. Effects of applied pressure on the densification rates in current-activated pressure-assisted densification (CAPAD) of nanocrystalline materials. Scripta Materialia, 2014, 92: 7–10

    Article  CAS  Google Scholar 

  384. Kodera Y, Hardin C L, Garay J E. Transmitting, emitting and controlling light: processing of transparent ceramics using current-activated pressure-assisted densification. Scripta Materialia, 2013, 69(2): 149–154

    Article  CAS  Google Scholar 

  385. Shen Z, Johnsson M, Zhao Z, et al. Spark plasma sintering of alumina. Journal of the American Ceramic Society, 2002, 85(8): 1921–1927

    Article  CAS  Google Scholar 

  386. Deng S, Li R, Yuan T, et al. Effect of electric current on crystal orientation and its contribution to densification during spark plasma sintering. Materials Letters, 2018, 229: 126–129

    Article  CAS  Google Scholar 

  387. Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metallurgy, 2002, 45(4): 322–328

    Article  CAS  Google Scholar 

  388. Marder R, Estournès C, Chevallier G, et al. Plasma in spark plasma sintering of ceramic particle compacts. Scripta Materialia, 2014, 82: 57–60

    Article  CAS  Google Scholar 

  389. Hulbert D M, Anders A, Andersson J, et al. A discussion on the absence of plasma in spark plasma sintering. Scripta Materialia, 2009, 60(10): 835–838

    Article  CAS  Google Scholar 

  390. Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering. Materials Science Forum, 1999, 308–311: 83–88

    Article  Google Scholar 

  391. Hu Z Y, Zhang Z H, Cheng X W, et al. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications. Materials & Design, 2020, 191: 108862

    Article  Google Scholar 

  392. Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552

    Article  CAS  Google Scholar 

  393. Zhang X, Gu S, Zhou B, et al. Solid-state sintering of glasses with optical nonlinearity from mesoporous powders. Journal of the American Ceramic Society, 2016, 99(5): 1579–1586

    Article  CAS  Google Scholar 

  394. Raven M S. Radio frequency sputtering and the deposition of high-temperature superconductors. Journal of Materials Science Materials in Electronics, 1994, 5(3): 129–146

    Article  CAS  Google Scholar 

  395. Horwitz C M. Radio frequency sputtering — the significance of power input. Journal of Vacuum Science & Technology A, 1983, 1(4): 1795–1800

    Article  CAS  Google Scholar 

  396. Mattei G, Battaglin G, Cattaruzza E, et al. Synthesis by co-sputtering of Au—Cu alloy nanoclusters in silica. Journal of Non-Crystalline Solids, 2007, 353(5–7): 697–702

    Article  CAS  Google Scholar 

  397. Cattaruzza E, Battaglin G, Gonella F, et al. Au—Cu nanoparticles in silica glass as composite material for photonic applications. Applied Surface Science, 2007, 254(4): 1017–1021

    Article  CAS  Google Scholar 

  398. Okuyama K. Preparation of micro-controlled particles using aerosol process. Journal of Aerosol Science, 1991, 22: S7–S10

    Article  CAS  Google Scholar 

  399. Messing G L, Zhang S C, Jayanthi G V. Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993, 76(11): 2707–2726

    Article  CAS  Google Scholar 

  400. El-Kady A M, Ali A F, Rizk R A, et al. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceramics International, 2012, 38(1): 177–188

    Article  CAS  Google Scholar 

  401. Hong Y L, Liu Z, Wang L, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369(6504): 670–674

    Article  CAS  Google Scholar 

  402. Cai Z, Liu B, Zou X, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructure. Chemical Reviews, 2018, 118(13): 6091–6133

    Article  CAS  Google Scholar 

  403. Pu J, Tang L, Li C, et al. Chemical vapor deposition growth of few-layer graphene for transparent conductive films. RSC Advances, 2015, 5(55): 44142–44148

    Article  CAS  Google Scholar 

  404. Lozovoy K A, Korotaev A G, Kokhanenko A P, et al. Kinetics of epitaxial formation of nanostructures by Frank—van der Merwe, Volmer—Weber and Stranski—Krastanow growth modes. Surface and Coatings Technology, 2020, 384: 125289

    Article  CAS  Google Scholar 

  405. Zinke-Allmang M. Phase separation on solid surfaces: nucleation, coarsening and coalescence kinetics. Thin Solid Films, 1999, 346(1–2): 1–68

    Article  CAS  Google Scholar 

  406. Ertorer E, Avery J C, Pavelka L C, et al. Surface-immobilized gold nanoparticles by organometallic CVD on amine-terminated glass surfaces. Chemical Vapor Deposition, 2013, 19(10–12): 338–346

    Article  CAS  Google Scholar 

  407. Hamilton J A, Pugh T, Johnson A L, et al. Cobalt(I) olefin complexes: precursors for metal-organic chemical vapor deposition of high purity cobalt metal thin films. Inorganic Chemistry, 2016, 55(14): 7141–7151

    Article  CAS  Google Scholar 

  408. Palgrave R G, Parkin I P. Aerosol assisted chemical vapor deposition of gold and nanocomposite thin films from hydrogen tetrachloroaurate(III). Chemistry of Materials, 2007, 19(19): 4639–4647

    Article  CAS  Google Scholar 

  409. Ashraf S, Blackman C S, Hyett G, et al. Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation. Journal of Materials Chemistry, 2006, 16(35): 3575–3582

    Article  CAS  Google Scholar 

  410. Talbot L, Cheng R K, Schefer R W, et al. Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics, 1980, 101(4): 737–758

    Article  Google Scholar 

  411. Ponja S D, Williamson B A D, Sathasivam S, et al. Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(27): 7257–7266

    Article  CAS  Google Scholar 

  412. Gardecka A J, Goh G K L, Sankar G, et al. On the nature of niobium substitution in niobium doped titania thin films by AACVD and its impact on electrical and optical properties. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(34): 17755–17762

    Article  CAS  Google Scholar 

  413. Walters G, Parkin I P. Aerosol assisted chemical vapour deposition of ZnO films on glass with noble metal and p-type dopants; use of dopants to influence preferred orientation. Applied Surface Science, 2009, 255(13–14): 6555–6560

    Article  CAS  Google Scholar 

  414. Ono M, Hata M, Tsunekawa M, et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43

    Article  CAS  Google Scholar 

  415. Yang Y, Kelley K, Sachet E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nature Photonics, 2017, 11(6): 390–395

    Article  CAS  Google Scholar 

  416. Ren M, Jia B, Ou J Y, et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Advanced Materials, 2011, 23(46): 5540–5544

    Article  CAS  Google Scholar 

  417. Pilot R, Signorini R, Durante C, et al. A review on surface-enhanced Raman scattering. Biosensors, 2019, 9(2): 57

    Article  CAS  Google Scholar 

  418. Kolobkova E, Kuznetsova M S, Nikonorov N. Ag/Na ion exchange in fluorophosphate glasses and formation of Ag nanoparticles in the bulk and on the surface of the glass. ACS Applied Nano Materials, 2019, 2(11): 6928–6938

    Article  CAS  Google Scholar 

  419. Takada K. Progress and prospective of solid-state lithium batteries. Acta Materialia, 2013, 61(3): 759–770

    Article  CAS  Google Scholar 

  420. Thangadurai V, Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics, 2006, 12(1): 81–92

    Article  CAS  Google Scholar 

  421. Kim J G, Son B, Mukherjee S, et al. A review of lithium and non-lithium based solid state batteries. Journal of Power Sources, 2015, 282: 299–322

    Article  CAS  Google Scholar 

  422. Takada K, Aotani N, Iwamoto K, et al. Solid state lithium battery with oxysulfide glass. Solid State Ionics, 1996, 86–88: 877–882

    Article  Google Scholar 

  423. Liu L, Zhao F, Chen X, et al. Local delivery of FTY720 in mesoporous bioactive glass improves bone regeneration by synergistically immunomodulating osteogenesis and osteoclastogenesis. Journal of Materials Chemistry B, 2020, 8(28): 6148–6158

    Article  CAS  Google Scholar 

  424. Shoaib M, Saeed A, Rahman M S U, et al. Mesoporous nano-bioglass designed for the release of imatinib and in vitro inhibitory effects on cancer cells. Materials Science and Engineering C, 2017, 77: 725–730

    Article  CAS  Google Scholar 

  425. Tabia Z, El Mabrouk K, Bricha M, et al. Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular in vitro bioactivity. RSC Advances, 2019, 9(22): 12232–12246

    Article  CAS  Google Scholar 

  426. Shuai C, Xu Y, Feng P, et al. Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver. Chemical Engineering Journal, 2019, 374: 304–315

    Article  Google Scholar 

  427. Fonseca J, Choi S. Rational synthesis of a hierarchical supramolecular porous material created via self-assembly of metal-organic framework nanosheets. Inorganic Chemistry, 2020, 59(6): 3983–3992

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Chemical Engineering Department at Northeastern University supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Fonseca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, J. Nanoparticles embedded into glass matrices: glass nanocomposites. Front. Mater. Sci. 16, 220607 (2022). https://doi.org/10.1007/s11706-022-0607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0607-7

Keywords

Navigation