Skip to main content
Log in

Nonlinear Optical Properties of Tungsten Lead–Pyrophosphate Glasses Containing Metallic Copper Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have prepared heavy metal oxide glasses containing metallic copper nanoparticles with promising nonlinear optical properties which were determined by Z-scan and pump-probe measurements using femtosecond laser pulses. For the wavelengths within the plasmon band, we have observed saturable absorption and response times of 2.3 ps. For the other regions of the spectrum, reverse saturable absorption and lifetimes shorter than 200 fs were verified. The nonlinear refractive index is about 2.0 × 10−19 m2/W from visible to telecom region, thus presenting an enhancement effect at wavelengths near the plasmon and Cu+2 d–d band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brow RK (2000) Review: the structure of simple phosphate glasses. J Non-Cryst Solids 263(1–4):1–28. doi:10.1016/s0022-3093(99)00620-1

    Article  Google Scholar 

  2. Campbell JH, Suratwala TI (2000) Nd-doped phosphate glasses for high-energy/high-peak-power lasers. J Non-Cryst Solids 263(1–4):318–341. doi:10.1016/s0022-3093(99)00645-6

    Article  Google Scholar 

  3. Poirier G, Ottoboni FS, Cassanjes FC, Remonte A, Messaddeq Y, Ribeiro SJL (2008) Redox behavior of molybdenum and tungsten in phosphate glasses. J Phys Chem B 112(15):4481–4487. doi:10.1021/jp711709r

    Article  CAS  Google Scholar 

  4. El-Mallawany RAH (2002) Tellurite glasses handbook: physical properties and data. CRC Press, Boca Raton

    Google Scholar 

  5. Sekhar H, Kiran PP, Rao DN (2011) Structural, linear and enhanced third-order nonlinear optical properties of Bi12SiO20 nanocrystals. Mater Chem Phys 130(1–2):113–120. doi:10.1016/j.matchemphys.2011.06.010

    Article  CAS  Google Scholar 

  6. Smolorz S, Kang I, Wise F, Aitken BG, Borrelli NF (1999) Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses. J Non-Cryst Solids 256:310–317. doi:10.1016/s0022-3093(99)00523-2

    Article  Google Scholar 

  7. Yamane M, Asahara Y (2000) Glasses for photonics. Cambridge University Press, Port Chester

    Book  Google Scholar 

  8. Inouye H, Tanaka K, Tanahashi I, Hirao K (1998) Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys Rev B 57(18):11334–11340. doi:10.1103/PhysRevB.57.11334

    Article  CAS  Google Scholar 

  9. Qu SL, Gao YC, Jiang XW, Zeng HD, Song YL, Qiu HR, Zhu CS, Hirao K (2003) Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser. Opt Commun 224(4–6):321–327. doi:10.1016/s0030-4018(03)01761-9

    Article  CAS  Google Scholar 

  10. Jimenez JA, Lysenko S, Zhang G, Liu H (2007) Optical properties of silver-doped aluminophosphate glasses. J Mater Sci 42(5):1856–1863. doi:10.1007/s10853-006-0898-6

    Article  CAS  Google Scholar 

  11. Kellermann G, Craievich AF (2004) Isothermal aggregation of Ag atoms in sodium borate glass. Phys Rev B 70(5):054106

    Article  Google Scholar 

  12. De Boni L, Barbano EC, de Assumpcao TA, Misoguti L, Kassab LRP, Zilio SC (2012) Femtosecond third-order nonlinear spectra of lead-germanium oxide glasses containing silver nanoparticles. Opt Express 20(6):6844–6850

    Article  Google Scholar 

  13. Rivera VAG, Osorio SPA, Ledemi Y, Manzani D, Messaddeq Y, Nunes LAO, Marega E Jr (2010) Localized surface plasmon resonance interaction with Er3+-doped tellurite glass. Opt Express 18(24):25321–25328. doi:10.1364/oe.18.025321

    Article  CAS  Google Scholar 

  14. Zhong J, Xiang W, Zhao H, Zhao W, Chen G, Liang X (2012) Synthesis, characterization, and third-order nonlinear optical properties of copper quantum dots embedded in sodium borosilicate glass. J Alloys Compd 537:269–274. doi:10.1016/j.jallcom.2012.05.046

    Article  CAS  Google Scholar 

  15. Teng Y, Zhou J, Luo F, Lin G, Qiu J (2011) Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation. J Non-Cryst Solids 357(11–13):2380–2383. doi:10.1016/j.jnoncrysol.2010.12.014

    Article  CAS  Google Scholar 

  16. Almeida JMP, De Boni L, Avansi W, Ribeiro C, Longo E, Hernandes AC, Mendonca CR (2012) Generation of copper nanoparticles induced by fs-laser irradiation in borosilicate glass. Opt Express 20(14):15106–15113

    Article  CAS  Google Scholar 

  17. Takeda Y, Momida H, Ohnuma M, Ohno T, Kishimoto N (2008) Wavelength dispersion of nonlinear dielectric function of Cu nanoparticle materials. Opt Express 16(10):7471–7480. doi:10.1364/oe.16.007471

    Article  CAS  Google Scholar 

  18. Nalda R, Coso R, Requejo-Isidro J, Olivares J, Suarez-Garcia A, Solis J, Afonso CN (2002) Limits to the determination of the nonlinear refractive index by the Z-scan method. J Opt Soc Am B-Opt Phys 19(2):289–296

    Article  Google Scholar 

  19. Cetin A, Kibar R, Hatipoglu M, Karabulut Y, Can N (2010) Third-order optical nonlinearities of Cu and Tb nanoparticles in SrTiO3. Physica B 405(9):2323–2325. doi:10.1016/j.physb.2010.02.036

    Article  CAS  Google Scholar 

  20. Wang YH, Peng SJ, Lu JD, Wang RW, Mao YL, Cheng YG (2008) Optical properties of Cu and Ag nanoparticles synthesized in glass by ion implantation. Vacuum 83(2):408–411. doi:10.1016/j.vacuum.2008.05.003

    Article  CAS  Google Scholar 

  21. Teng Y, Qian B, Jiang N, Liu Y, Luo F, Ye S, Zhou J, Zhu B, Zeng H, Qiu J (2010) Light and heat driven precipitation of copper nanoparticles inside Cu(2+)-doped borate glasses. Chem Phys Lett 485(1–3):91–94. doi:10.1016/j.cplett.2009.12.010

    Article  CAS  Google Scholar 

  22. Sheikbahae M, Said AA, Vanstryland EW (1989) High-sensitivity, single-beam N2 measurements. Opt Lett 14(17):955–957

    Article  CAS  Google Scholar 

  23. De Boni L, Andrade AA, Misoguti L, Mendonca CR, Zilio SC (2004) Z-scan measurements using femtosecond continuum generation. Opt Express 12(17):3921–3927. doi:10.1364/opex.12.003921

    Article  Google Scholar 

  24. Almeida JMP, De Boni L, Hernandes AC, Mendonca CR (2011) Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses. Opt Express 19(18):17220–17225

    Article  CAS  Google Scholar 

  25. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. doi:10.1021/jp026731y

    Article  CAS  Google Scholar 

  26. Qiu JR, Jiang XW, Zhu CS, Shirai M, Si J, Jiang N, Hirao K (2004) Manipulation of gold nanoparticles inside transparent materials. Angew Chem Int Ed 43(17):2230–2234. doi:10.1002/anie.200352380

    Article  CAS  Google Scholar 

  27. Rao NS, Rao LS, Gandhi Y, Ravikumar V, Veeraiah N (2010) Copper ion as a structural probe in lead bismuth arsenate glasses by means of dielectric and spectroscopic studies. Physica B 405(19):4092–4100. doi:10.1016/j.physb.2010.06.059

    Article  Google Scholar 

  28. Wang YH, Wei L, Lu JD, Ji LL, Zang RG, Wang RW, Li HQ (2011) Nonlinear optical response of silica doped with copper nanoclusters under 1064 nm laser excitation. Vacuum 86(3):285–289. doi:10.1016/j.vacuum.2011.07.042

    Article  CAS  Google Scholar 

  29. Yeshchenko OA, Dmitruk IM, Dmytruk AM, Alexeenko AA (2007) Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater Sci Eng B-Solid State Mater Adv Technol 137(1–3):247–254. doi:10.1016/j.mseb.2006.11.030

    Article  CAS  Google Scholar 

  30. Kreibig U, Vollmer M (2010) Optical properties of metal clusters. Springer series in materials science. Springer, Berlin

    Google Scholar 

  31. Oliveira TR, Fedus K, Manzani D, Falcao-Filho EL, Boudebs G, de Araujo CB, Messaddeq Y (2010) Near-infrared Kerr nonlinearity of Pb(PO3)(2)-WO3 glasses. J Appl Phys 108:103523. doi:10.1063/1.3514570

    Article  Google Scholar 

  32. De Boni L, Wood EL, Toro C, Hernandez FE (2008) Optical saturable absorption in gold nanoparticles. Plasmonics 3(4):171–176. doi:10.1007/s11468-008-9071-1

    Article  Google Scholar 

  33. Takeda Y, Lee CG, Kishimoto N (2002) Nonlinear optical properties of Cu nanoparticle composites fabricated by 60 keV negative ion implantation. Nucl Inst Methods Phys Res B 191:422–427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Brazilian research funding agencies FAPESP, CAPES, CNPq, and Elderson Cássio Domenicucci, and from the Crystal Grown and Ceramic Materials group (IFSC) for the cutting and polishing of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Manzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzani, D., Almeida, J.M.P., Napoli, M. et al. Nonlinear Optical Properties of Tungsten Lead–Pyrophosphate Glasses Containing Metallic Copper Nanoparticles. Plasmonics 8, 1667–1674 (2013). https://doi.org/10.1007/s11468-013-9585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9585-z

Keywords

Navigation