Skip to main content
Log in

Precipitation of Silver Nanoparticles in Borate Glasses by 1064 nm Nd:YAG Nanosecond Laser Pulses: Characterization and Dielectric Studies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work aims to present a modern process to synthesis nanoparticles in a glassy matrix. Borate glasses doped by silver nitrate (AgNO3) via the melt annealing technique were irradiated by a (1064 nm wavelength) Nd:YAG (Neodymium–doped Yttrium Aluminum Garnet) laser to yeild precipitation of silver nanoparticles (AgNPs) in borate glasses. The characterization of the irradiated glasses was investigated using ultraviolet/visible (UV/Vis.), x-ray diffraction (XRD), high resolution-transmission electron microscopy (HR-TEM), field emission-scanning electron microscopy (FE-SEM), and dielectric properties. XRD patterns depict the presence of sharp diffraction peaks at 111 and 200 planes that can be attributed to the precipitated AgNPs in the borate glass sample after laser irradiation. A significant change in color was observed within the borate glass after laser irradiation, which was attributed to the appearance of surface plasmon resonance and confirmed the presence of AgNPs in the borate glass. The morphological properties and the distribution of the observed AgNPs inside the sample were performed via HR-TEM and FE-SEM. The behavior of dielectric constant and dielectric loss progressively decreased as the frequency increased. The values of AC conductivity increased as the temperature of the borate glass matrix increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Maier and H.A. Atwater, J. Appl. Phys. 98, 11101 (2005).

    Article  Google Scholar 

  2. M.A. Morsi, A. Rajeh, and A.A. Menazea, J. Mater. Sci. Mater. Electron. 30, 2693 (2019).

    Article  CAS  Google Scholar 

  3. J.P. Blondeau and O. Veron, Appl. J. Opt. Adv. Mater. 12, 445 (2010).

    CAS  Google Scholar 

  4. F.H. Abd El-kader, N.A. Hakeem, I.S. Elashmawi, and A.A. Menazea, Spectrochem. Acta A 138, 331 (2015).

    Article  CAS  Google Scholar 

  5. J.W. Jeon, S. Yoon, H.W. Choi, J. Kim, D. Farson, and S.H. Cho, Appl. Sci. 8, 112 (2018).

    Article  Google Scholar 

  6. G. Ximing, G. Bin, W. Yuanlin, and G. Shuanghong, Mater. Sci. Eng. C 80, 698 (2017).

    Article  Google Scholar 

  7. A.A. Menazea, I.S. Elashmawi, F.H. Abd El-kader, and N.A. Hakeem, J. Inorgan. Organometall. Polym. Mater. 28, 2564 (2018).

    Article  CAS  Google Scholar 

  8. D.R. Raj and C. Sudarsanakumar, Sens. Actuators A Phys. 253, 41 (2017).

    Article  Google Scholar 

  9. I.S. Elashmawi and A.A. Menazea, J. Mater. Res. Technol. 2, 1944 (2019).

    Article  Google Scholar 

  10. Y. Hashimoto, S. Takeuchi, S. Mitsunobu, and Y.S. Ok, J. Hazard. Mater. 322, 318 (2017).

    Article  CAS  Google Scholar 

  11. M. Dawy, H.M. Rifaat, and A.A. Menazea, Cur. Sci. Int. 4, 621 (2015).

    Google Scholar 

  12. R. Schneider, R. Schneider, E.A. de Campos, J.B.S. Mendes, J.F. Felix, and P.A. Santa-Cruz, RSC Adv. J. 7, 41479 (2017).

    Article  CAS  Google Scholar 

  13. R.R. Gattas and E. Mazur, Nat. Photon. 2, 219 (2008).

    Article  Google Scholar 

  14. J. Gottmann, D. Wortmann, and M. Orstmann-Jungemann, Appl. Surf. Sci. 255, 5641 (2009).

    Article  CAS  Google Scholar 

  15. N. Li, J.H. Li, and B.X. Liu, Appl. Surf. Sci. 308, 316 (2014).

    Article  CAS  Google Scholar 

  16. N. Jmal and J. Bouaziz, Mater. Lett. 215, 280 (2018).

    Article  CAS  Google Scholar 

  17. S.A. Sharma and S. Aggarwal, J. Non-Cryst. Solids 485, 57 (2018).

    Article  Google Scholar 

  18. J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, J. Cryst. Growth 310, 234 (2008).

    Article  CAS  Google Scholar 

  19. S. Striepe and J. Deubener, J. Non-Cryst. Solids 375, 47 (2013).

    Article  CAS  Google Scholar 

  20. J.A. Jimenez and M. Sendova, J. Alloys Compd. 691, 44 (2017).

    Article  CAS  Google Scholar 

  21. F.H. Abd El-kader, N.A. Hakeem, W.H. Osman, A.A. Menazea, and A.M. Abdelghany, Silicon 11, 377 (2019).

    Article  CAS  Google Scholar 

  22. A.A. Menazea, A.M. Abdelghany, W.H. Osman, N.A. Hakeem, and F.H. Abd El-Kader, J. Non-Cryst. 513, 49 (2019).

    Article  CAS  Google Scholar 

  23. A.A. Menazea, A.M. Abdelghany, N.A. Hakeem, and W.H. Osman, Silicon (2019). https://doi.org/10.1007/s12633-019-0094-3.

    Article  Google Scholar 

  24. G.Y. Shakhgildyan, A.S. Lipatiev, M.P. Vetchinnikov, V.V. Popova, S.V. Lotarev, N.V. Golubev, E.S. Ignat’eva, M.M. Presniakov, and V.N. Sigaeva, J. Non-Cryst. Solids 481, 634 (2018).

    Article  CAS  Google Scholar 

  25. M.H. Shaaban, A.A. Ali, and M.K. El-Nimr, Mater. Chem. Phys. 96, 433 (2006).

    Article  CAS  Google Scholar 

  26. P.R. Rejikumar, P.V. Jyothy, S. Mathew, V. Thomas, and N.V. Unnikrishnan, Phys. B 405, 1513 (2010).

    Article  CAS  Google Scholar 

  27. D. Dini, M.J. Calvete, and M. Hanack, Chem. Rev. 116, 13043 (2016).

    Article  CAS  Google Scholar 

  28. A.M. Abdelghany, H.A. ElBatal, A. Okasha, R.M. Ramadan, A.R. Wassel, and A.A. Menazea, Silicon 10, 1533 (2017).

    Article  Google Scholar 

  29. A.H. Hammad and A.M. Abdelghany, J. Non-Cryst. Solids 433, 14 (2016).

    Article  CAS  Google Scholar 

  30. M.A. Ouis, M.A. Azooz, and H.A. ElBatal, J. Non-Cryst. Solids 494, 31 (2018).

    Article  CAS  Google Scholar 

  31. A.M. Abdelghany, H.A. ElBatal, and F.H. ElBatal, Mid. East J. Appl. Sci. 5, 7 (2015).

    Google Scholar 

  32. F.E. Salman and A. Mekki, J. Non-Cryst. Solids 357, 2658 (2011).

    Article  CAS  Google Scholar 

  33. Y.H. El-bashar, A.M. Badr, H.A. Elshaikh, A.G. Mostafa, and A.M. Ibrahim, Int. J. Process. Appl. Ceram. 10, 277 (2016).

    Article  CAS  Google Scholar 

  34. S.A. Mohamed, A.A. Al-Ghamdi, G.D. Sharma, and M.K. El Mansy, J. Adv. Res. 5, 79 (2014).

    Article  CAS  Google Scholar 

  35. S.A. Yerişkin, M. Balbaşi, and A. Tataroğlu, J. Appl. Polym. Sci. 133, 43827 (2016).

  36. A.G. El-Shamy, W.M. Attia, and K.M. Abd El Kader, Mater. Chem. Phys. 191, 225 (2017).

    Article  CAS  Google Scholar 

  37. J. Kawamura and M. Shimoji, J. Non-Cryst. Solids 79, 367 (1986).

    Article  CAS  Google Scholar 

  38. G.E. El-Falaky, O.W. Guirguis, and N.S. AbdEl-Aal, Prog. Nat. Sci. Mater. Int. 22, 86 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The Authors wish to thank the Laser Technology Unit (LTU) in National Research Centre (NRC) of Egypt, for experimental support in using the nanosecond laser system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Menazea.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menazea, A.A., Abdelghany, A.M., Hakeem, N.A. et al. Precipitation of Silver Nanoparticles in Borate Glasses by 1064 nm Nd:YAG Nanosecond Laser Pulses: Characterization and Dielectric Studies. J. Electron. Mater. 49, 826–832 (2020). https://doi.org/10.1007/s11664-019-07736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07736-z

Keywords

Navigation