Skip to main content

Advertisement

Log in

Carbon Nanostructure-based Glass Composites: A Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Carbon nanostructure (CNS)-based glass composites are an emerging area of research owing to the ability of these structures to dramatically alter the properties of the host glass. Due to their impressive electrical, mechanical, optical, and thermal properties, the novel characteristics imparted to the glass system with their incorporation have opened up new horizons for the development of innovative nanocomposite materials that can be used in different fields such as energy storage devices, sensors, actuators, optics, laser technology. Although several studies have been conducted on the inclusion of CNSs in polymer matrices, inorganic systems have gained relatively less attention. This review provides an overview of two principal synthesis techniques employed by researchers for the fabrication of these composites, i.e., melt-quenching and sol–gel processing. It summarizes the results obtained by researchers highlighting the role of CNSs in enhancing the functional properties of the host matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lekawa-Raus A, Patmore J, Kurzepa L, Bulmer J & Koziol K, Adv Funct Mater, 24 (2014) 3661, https://doi.org/10.1002/adfm.201303716

    Article  CAS  Google Scholar 

  2. Han Z & Fina A, Prog Polym Sci, 36 (2011) 914, https://doi.org/10.1016/j.progpolymsci.2010.11.004

    Article  CAS  Google Scholar 

  3. Sharifian A, Baghani M, Wu J, J Phys Chem C, 123 (2019) 3226, https://doi.org/10.1021/acs.jpcc.8b12269

    Article  CAS  Google Scholar 

  4. Tkachev A G, Sldozian R J & Mikhaleva Z A, J Eng Sci Technol, 26 (2020) 103, https://doi.org/10.18721/JEST.26208

    Article  Google Scholar 

  5. Wang J, Chen Y, Li R, Dong H, Zhang L, Lotya M, Coleman J N & Blau W J, Carbon nanotubes: Synthesis, characteriztion, applications, edited by Yellampalli S (Intech Open), 2011, p. 397, https://doi.org/10.5772/16510

    Google Scholar 

  6. VanderWal R L, Ticich T M & Curtis V E, Diffusion flame synthesis of single-walled carbon nanotubes, Chem Phys Lett, 323 (2000) 217, https://doi.org/10.1016/S0009-2614(00)00522-4

    Article  CAS  Google Scholar 

  7. Hou S S, Huang W C & Lin T H, J Nanoparticle Res, 14 (2012) 1243, https://doi.org/10.1007/s11051-012-1243-4

    Article  CAS  Google Scholar 

  8. [8] Lahiri I & Choi W, Crit Rev Solid State Mater Sci, 38 (2013) 128, https://doi.org/10.1080/10408436.2012.729765

    Article  CAS  Google Scholar 

  9. Samal M, Barange N, Ko D H & Yun K, J Phys Chem C, 119 (2015) 19619, https://doi.org/10.1021/acs.jpcc.5b05225

    Article  CAS  Google Scholar 

  10. Kavetskyy T S & Stepanov A L, Radiation Effects in Materials, edited by Monteiro W A (Intech Open), 2016, p. 287, https://doi.org/10.5772/62669

    Google Scholar 

  11. Pieta P, Obraztsov I, D’Souza F & Kutner W, ECS J Solid State Sci Technol, 2 (2013) M3120, https://doi.org/10.1149/2.015310jss

    Article  CAS  Google Scholar 

  12. Li C, Thostenson E T & Chou T W, Compos Sci Technol, 68 (2008) 1227, https://doi.org/10.1016/j.compscitech.2008.01.006

    Article  CAS  Google Scholar 

  13. Avilés F, Oliva-Avilés A I & Cen-Puc M, P Adv Eng Mater, 20 (2018) 1701159, https://doi.org/10.1002/adem.201701159

    Article  CAS  Google Scholar 

  14. Pirsaheb M, Mohammadi S, Salimi A & Payandeh M, Microchim Acta, 186 (2019) 1, https://doi.org/10.1007/s00604-019-3338-4

    Article  CAS  Google Scholar 

  15. Despotuli A & Andreeva A, Nanosci Nanotechnol Lett, 3 (2011) 119, https://doi.org/10.1166/nnl.2011.1130

    Article  CAS  Google Scholar 

  16. Higgins T M, McAteer D, Coelho J C M, Sanchez B M, Gholamvand Z, Moriarty G, McEvoy N, Berner N C, Duesberg G S, Nicolosi V, Coleman J N, ACS nano, 8 (2014) 9567, https://doi.org/10.1021/nn5038543

    Article  CAS  Google Scholar 

  17. Yang W, Wang X & Fang C,Compos B Eng, 82 (2015) 143, https://doi.org/10.1016/j.compositesb.2015.08.044

    Article  CAS  Google Scholar 

  18. Dang M N, Nguyen M D, Hiep N K, Hong P N, Baek I H & Hong N T, Nanomaterials, 10 (2020) 1931, https://doi.org/10.3390/nano10101931

    Article  CAS  Google Scholar 

  19. Nguyen C V, Ye Q & Meyyappan M, Meas Sci Technol, 16 (2005) 2138, https://doi.org/10.1088/0957-0233/16/11/003

    Article  CAS  Google Scholar 

  20. Ritschel M, Uhlemann M, Gutfleisch O, Leonhardt A, Graff A, Täschner C & Fink J, Appl Phys Lett, 80 (2002) 2985, https://doi.org/10.1063/1.1469680

    Article  CAS  Google Scholar 

  21. Kowalczyk P, Solarz L, Do D, Samborski A & MacElroy J, Langmuir, 22 (2006) 9035, https://doi.org/10.1021/la061925g

    Article  CAS  Google Scholar 

  22. Larionova T, Mater Sci, 21 (2015) 364, https://doi.org/10.5755/j01.ms.21.3.7348

    Article  Google Scholar 

  23. Tsemenko V, Tolochko O, Kol’Tsova T, Ganin S & Mikhailov V, Met Sci Heat Treat, 60 (2018) 24, https://doi.org/10.1007/s11041-018-0235-0

    Article  CAS  Google Scholar 

  24. Mukhopadhyay A, Chu B T, Green M L & Todd R I, Acta Mater, 58 (2010) 2685, https://doi.org/10.1051/matecconf/201814503012

    Article  CAS  Google Scholar 

  25. Pokrass M, Burshtein Z, Bar G & Gvishi R, Carbon nanotubes, graphene, and associated devices VII. International Society for Optics and Photonics, 9168 (2014) 916807, https://doi.org/10.1117/12.2060805

    Google Scholar 

  26. Phys Rev B, 60 (1999) 3182, https://doi.org/10.1103/PhysRevB.60.3182

    Article  CAS  Google Scholar 

  27. Tatsumisago M, Minami T, Umesaki N & Iwamoto N, Chem Lett, 15 (1986) 1371, https://doi.org/10.1246/cl.1986.1371

    Article  Google Scholar 

  28. Pye L D, Fréchette V D & Kreidl N J, Borate glasses: structure, properties, applications, vol, 12 (Springer Science & Business Media), 2012.

    Google Scholar 

  29. Bengisu M, J Mater Sci, 51 (2016) 2199, https://doi.org/10.1007/s10853-015-9537-4

    Article  CAS  Google Scholar 

  30. Hoppe U, Walter G, Kranold R & Stachel D, J Non Cryst Solids, 263 (2000) 29, https://doi.org/10.1016/S0022-3093(99)00621-3

    Article  Google Scholar 

  31. Brow R K, J Non Cryst Solids, 263-264 (2000) 1, https://doi.org/10.1016/S0022-3093(99)00620-1

    Article  Google Scholar 

  32. Seddon A, J Non Cryst Solids, 184 (1995) 44, https://doi.org/10.1016/0022-3093(94)00686-5

    Article  CAS  Google Scholar 

  33. Zakery A & Elliott S, J Non Cryst Solids, 330 (2003) 1, https://doi.org/10.1016/j.jnoncrysol.2003.08.064

    Article  CAS  Google Scholar 

  34. Button D, Tandon R, King C, Veléz M, Tuller H & Uhlmann D, J Non Cryst Solids, 49 (1982) 129, https://doi.org/10.1016/00223093(82)90112-0

    Article  CAS  Google Scholar 

  35. Kojima S, Solids, 1 (2020) 16, https://doi.org/10.3390/solids1010003

    Article  Google Scholar 

  36. Suzuya K, Price D L, Loong C K & Martin S W, J Non Cryst Solids, 232-234 (1998) 650, https://doi.org/10.1016/S0022-3093(98)00529-8

    Article  Google Scholar 

  37. Yokota R, Phys Rev, 101 (1956) 522, https://doi.org/10.1103/PhysRev.101.522

    Article  CAS  Google Scholar 

  38. Yiannopoulos Y D, Chryssikos G D & Kamitsos E I, Phys Chem Glas, 42 (2001) 164, https://www.ingentaconnect.com/content/sgt/pcg/2001/00000042/00000003/4203164

    CAS  Google Scholar 

  39. Reddy M C, Deva Prasad Raju B, John Sushma N, Dhoble N & Dhoble S, Renew Sustain Energy Rev, 51 (2015) 566, https://doi.org/10.1016/j.rser.2015.06.025

    Article  CAS  Google Scholar 

  40. Jha A, Richards B, Jose G, Teddy-Fernandez T, Joshi P, Jiang X & Lousteau J, Prog Mater Sci, 57 (2012) 1426, https://doi.org/10.1016/j.pmatsci.2012.04.003

    Article  CAS  Google Scholar 

  41. Viallet V, Seznec V, Hayashi A, Tatsumisago M & Pradel A, Glasses and Glass-Ceramics for Solid-State Battery Applications (Cham: Springer International Publishing), 2019, p. 1697, https://doi.org/10.1007/978-3-319-93728-1_50

    Book  Google Scholar 

  42. Salinigopal M S, Gopakumar N & Anjana P S, Silicon, 12 (2020) 101, https://doi.org/10.1007/s12633-019-00103-x

    Article  CAS  Google Scholar 

  43. Ehrt D & Seeber W, J Non Cryst Solids, 129 (1991) 19, https://doi.org/10.1016/0022-3093(91)90076-I

    Article  CAS  Google Scholar 

  44. Zusman R, Rottman C, Ottolenghi M & Avnir D, J Non Cryst Solids, 122 (1990) 107, https://doi.org/10.1016/0022-3093(90)90232-B

    Article  CAS  Google Scholar 

  45. Mishra S, Jaiswal P, Lohia P and Dwivedi D K, 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), (2018), p 1. https://doi.org/10.1016/j.ijthermalsci.2005.03.014

  46. Głąb S & Hulanicki A, Encyclopedia of Analytical Science (Second Edition) edited by Worsfold P, Townshend A & Poole C (Oxford: Elsevier), 2005, p. 498, https://doi.org/10.1016/B0-12-369397-7/00292-2

    Google Scholar 

  47. El-Alaily N & Mohamed R, Mater Sci Eng B, 98 (2003) 193, https://doi.org/10.1016/S0921-5107(02)00587-1

    Article  CAS  Google Scholar 

  48. Kumar A, Jain A, Sayyed M I, Laariedh F, Mahmoud K A, Nebhen J, Khandaker M U & Faruque M R I,Sci Rep, 11 (2021) 7784, https://doi.org/10.1038/s41598-021-87256-1

    Article  CAS  Google Scholar 

  49. Al-Buriahi M S & Mann K S, Mater Res Express, 6 (2019) 105206, https://doi.org/10.1088/2053-1591/ab3f85

    Article  CAS  Google Scholar 

  50. Chu B T T, Tobias G, Salzmann C G, Ballesteros B, Grobert N, Todd R I & Green M L H, J Mater Chem 18 (2008) 5344, https://doi.org/10.1039/B809369E

    Article  CAS  Google Scholar 

  51. Zheng C, Feng M, Zhen X, Huang J & Zhan H, J Non Cryst Solids, 354 (2008) 1327, https://doi.org/10.1016/j.jnoncrysol.2007.02.089

    Article  CAS  Google Scholar 

  52. Khurshid Z, Husain S, Alotaibi H, Rehman R, Zafar M S, Farooq I & Khan A S, Biomedical, therapeutic and clinical applications of bioactive glasses (Woodhead Publishing Series in Biomaterials), edited by Kaur G, 2019, p. 497, https://doi.org/10.1016/B978-0-08-102196-5.00018-5

    Google Scholar 

  53. Yadav A K & Singh P, RSC Adv, 5 (2015) 67583, https://doi.org/10.1039/C5RA13043C

    Article  CAS  Google Scholar 

  54. Stehlik S, Orava J, Kohoutek T, Wagner T, Frumar M, Zima V, Hara T, Matsui Y, Ueda K & Pumera M, J Solid State Chem, 183 (2010) 144, http://dx.doi.org/https://doi.org/10.1016/j.jssc.2009.11.002

    Article  CAS  Google Scholar 

  55. Jaiswal P & Dwivedi D, Mater Res Express, 6 (2018) 015202, https://doi.org/10.1088/2053-1591/aae2e8

    Article  CAS  Google Scholar 

  56. Balaji S & Debnath R, Nanotechnology, 22 (2011) 415706, https://doi.org/10.1088/0957-4484/22/41/415706

    Article  CAS  Google Scholar 

  57. Ghosh A, Ghosh S, Das S, Das P, Majumder D & Banerjee R, Chem Phys Lett, 496 (2010) 321, https://doi.org/10.1016/j.cplett.2010.07.069

    Article  CAS  Google Scholar 

  58. Ghosh S, Ghosh A, Das S, Kar T, Das P K & Banerjee R, AIP Adv, 1 (2011) 042133, https://doi.org/10.1063/1.3660378

    Article  CAS  Google Scholar 

  59. Ghosh S, Ghosh A, Mukherjee J & Banerjee R, RSC Adv, 5 (2015) 51116, http://dx.doi.org/https://doi.org/10.1039/C5RA04810A

    Article  CAS  Google Scholar 

  60. Lee Y H, Kim D H & Ju B K, J Electrochem Soc 147 (2000) 3564, https://doi.org/10.1149/1.1393939

    Article  CAS  Google Scholar 

  61. Yosida Y & Oguro I, J Appl Phys 86 (1999) 999, https://doi.org/10.1063/1.370838

    Article  CAS  Google Scholar 

  62. Liu B, Sundqvist B, Andersson O, Wågberg T, Nyeanchi E, Zhu X M & Zou G, Solid State Commun, 118 (2001) 31, https://doi.org/10.1016/S0038-1098(01)00034-5

    Article  CAS  Google Scholar 

  63. Sheng P, Phys Rev B, 21 (1980) 2180, https://doi.org/10.1103/PhysRevB.21.2180

    Article  CAS  Google Scholar 

  64. Swartz E T & Pohl R O, Rev Mod Phys, 61 (1989) 605, https://doi.org/10.1103/RevModPhys.61.605

    Article  Google Scholar 

  65. Hopkins P E, Norris P M, Stevens R J, Beechem T E & Graham S, J Heat Transf, 130 (2008) 062402, https://doi.org/10.1115/1.2897344

    Article  CAS  Google Scholar 

  66. Duda J C, Smoyer J L, Norris P M & Hopkins P E, Appl Phys Lett, 95 (2009) 031912, https://doi.org/10.1063/1.3189087

    Article  CAS  Google Scholar 

  67. Yu Z, Ohara T, He Y & Hopkins P E, ISRN Mech Eng, 2013 (2013) 682586, https://doi.org/10.1155/2013/682586

    Article  Google Scholar 

  68. Jimenez J A, Sendova M, Fachini E R & Zhao C, J Mater Chem C, 4 (2016) 9771, https://doi.org/10.1039/C6TC03398A

    Article  CAS  Google Scholar 

  69. Jiménez J A, J Alloys Compd, 656 (2016) 685, https://doi.org/10.1016/j.jallcom.2015.10.009

    Article  CAS  Google Scholar 

  70. Sahoo R & Debnath R, Chem Phys Lett, 368 (2003) 769, https://doi.org/10.1016/S0009-2614(02)01983-8

    Article  CAS  Google Scholar 

  71. Gautam C, Shweta, Dey K K, Ghosh M, Prakash R, Sharma K and Singh D, Synthesis of bioactive glasses SiO2–Al2O3–MgO–K2CO3–CaO–MgF2–CNT: Structural, mechanical and biological properties, (2021) preprint URL https://assets.researchsquare.com/files/rs-479436/v1_stamped.pdf?c=1620242527

  72. Meng Y, Tang C, Tsui C & Uskokovic P, J Compos Mater, 44 (2010) 871, https://doi.org/10.1177/0021998309349552

    Article  CAS  Google Scholar 

  73. Nazeri A, Bescher E & Mackenzie J D, Ceramic composites by the sol-gel method: A review (John Wiley Sons, Ltd), 1993, p. 1, https://doi.org/10.1002/9780470314272.ch1

  74. Chan K F, Zaid M H M, Mamat M S, Liza S, Tanemura M & Yaakob Y, Crystals, 11 (2021) 457, https://doi.org/10.3390/cryst11050457

    Article  CAS  Google Scholar 

  75. Zhang D, Xiao W, Liu C, Liu X, Ren J, Xu B & Qiu J, Nat Commun, 11 (2020) 2805, https://doi.org/10.1038/s41467-020-16649-z

    Article  CAS  Google Scholar 

  76. Kaya C, Boccaccini A R & Chawla K K, J Am Ceram Soc, 83 (2000) 1885, https://doi.org/10.1111/j.1151-2916.2000.tb01486.x

    Article  CAS  Google Scholar 

  77. German R M, ‘Chapter 10–Sintering with external pressure’ in Sintering: From empirical observations to scientific principles (Boston: Butterworth-Heinemann), edited by German R M, 2014, p. 305.

    Google Scholar 

  78. Binner J & Murthy T S, ‘Structural and thermostructural ceramics’ in Encyclopedia of materials: Technical ceramics and glasses (Oxford: Elsevier), edited by Pomeroy M, 2021, p. 3.

    Google Scholar 

  79. Porwal H, Grasso S, Mani M K & Reece M J, J Eur Ceram Soc, 34 (2014) 3357, https://doi.org/10.1016/j.jeurceramsoc.2014.04.031

    Article  CAS  Google Scholar 

  80. Leonov A A, Khasanov A O, Danchenko V A & Khasanov O L, IOP Conf Ser: Mater Sci Eng, 286 (2017) 012034, https://doi.org/10.1088/1757-899X/286/1/012034

    Article  Google Scholar 

  81. Ćurković L, Veseli R, Gabelica I, Žmak I, Ropuš I & Vukšić M, Trans Famena, 45 (2021) 1. https://doi.org/10.21278/TOF.451021220

    Article  Google Scholar 

  82. Singhal C, Murtaza Q & Parvej, Mater Today Proc, 5 (2018) 24287, https://doi.org/10.1016/j.matpr.2018.10.224

    Article  Google Scholar 

  83. Crivelli-Visconti I & Cooper G, Nature, 221 (1969) 754, https://doi.org/10.1038/221754a0

    Article  Google Scholar 

  84. Sambell R, Bowen D & Phillips D, J Mater Sci, 7 (1972) 663, https://doi.org/10.1007/BF00549378

    Article  CAS  Google Scholar 

  85. Boccaccini A R, Thomas B J C, Brusatin G & Colombo P, J Mater Sci, 42 (2007) 2030, https://doi.org/10.1007/s10853-006-0540-7

    Article  CAS  Google Scholar 

  86. Zawrah M & Hamzawy E, Ceram Int, 28 (2002) 123, https://doi.org/10.1016/S0272-8842(01)00067-0

    Article  CAS  Google Scholar 

  87. Boccaccini A, Mater Lett, 34 (1998) 285, https://doi.org/10.1016/S0167-577X(97)00186-9

    Article  CAS  Google Scholar 

  88. Scherera G W, J Am Ceram Soc, 70 (1987) 719, https://doi.org/10.1111/j.1151-2916.1987.tb04870.x

    Article  Google Scholar 

  89. Esumi K, Ishigami M, Nakajima A, Sawada K & Honda H, Carbon, 34 (1996) 279, https://doi.org/10.1016/0008-6223(96)83349-5

    Article  CAS  Google Scholar 

  90. Saito T, Matsushige K & Tanaka K, Phys B: Condens Matter, 323 (2002) 280, https://doi.org/10.1016/S0921-4526(02)00999-7

    Article  CAS  Google Scholar 

  91. Boccaccini A R, Int Ceram, 48 (1999) 176.

    CAS  Google Scholar 

  92. Wang X, Padture N P & Tanaka H, Nat Mater, 3 (2004) 539, https://doi.org/10.1038/nmat1161

    Article  CAS  Google Scholar 

  93. Boccaccini A, Acevedo D, Brusatin G & Colombo P, J Eur Ceram Soc, 25 (2005) 1515, https://doi.org/10.1016/j.jeurceramsoc.2004.05.015

    Article  CAS  Google Scholar 

  94. Duszová A, Dusza J, Tomášek K, Blugan G & Kuebler J, J Eur Ceram Soc, 28 (2008) 1023, https://doi.org/10.1016/j.jeurceramsoc.2007.09.011

    Article  CAS  Google Scholar 

  95. Ning J, Zhang J, Pan Y & Guo J, Mater Sci Eng A, 357 (2003) 392, https://doi.org/10.1016/S0921-5093(03)00256-9

    Article  CAS  Google Scholar 

  96. Phillips D C, J Mater Sci, 7 (1972) 1175, https://doi.org/10.1007/BF00550201

    Article  CAS  Google Scholar 

  97. Suzuki T, Sato M & Sakai M, J Mater Res, 7 (1992) 2869, https://doi.org/10.1557/JMR.1992.2869

    Article  CAS  Google Scholar 

  98. Wells J K & Beaumont P W R, J Mater Sci, 20 (1985) 1275, https://doi.org/10.1007/BF01026323

    Article  Google Scholar 

  99. Min-Feng Y, Oleg L, Dyer Mark J, Katerina M, Kelly Thomas F & Ruoff Rodney S, Science, 287 (2021) 637, https://doi.org/10.1126/science.287.5453.637

    Article  Google Scholar 

  100. Otieno G, Koos A A, Dillon F, Wallwork A, Grobert N & Todd R I, Carbon, 48 (2010) 2212, https://doi.org/10.1016/j.carbon.2010.02.029

    Article  CAS  Google Scholar 

  101. Qian D, Dickey E C, Andrews R & Rantell T, Appl Phys Lett, 76 (2000) 2868, https://doi.org/10.1063/1.126500

    Article  CAS  Google Scholar 

  102. Porwal H, Tatarko P, Grasso S, Hu C, Boccaccini A R, Dlouhý I & Reece M J, Sci Technol Adv Mater, 14 (2013) 055007, https://doi.org/10.1088/1468-6996/14/5/055007

    Article  CAS  Google Scholar 

  103. Zheng C, Huang L, Guo Q, Chen W & Li W, Opt Laser Technol, 107 (2018) 281, https://doi.org/10.1016/j.optlastec.2018.06.013

    Article  CAS  Google Scholar 

  104. Cho J, Boccaccini A R & Shaffer M S P, J Mater Sci, 44 (2009) 1934, https://doi.org/10.1007/s10853-009-3262-9

    Article  CAS  Google Scholar 

  105. Guo S, Sivakumar R, Kitazawa H & Kagawa Y, J Am Ceram Soc, 90 (2007) 1667, https://doi.org/10.1111/j.1551-2916.2007.01636.x

    Article  CAS  Google Scholar 

  106. DiMaio J, Rhyne S, Yang Z, Fu K, Czerw R, Xu J, Webster S, Sun Y P, Carroll D & Ballato J, Inf Sci, 149 (2003) 69. https://doi.org/10.1016/S0020-0255(02)00246-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, for providing the necessary administrative and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Bharj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Bharj, J. & Bharj, R.S. Carbon Nanostructure-based Glass Composites: A Review. Trans Indian Inst Met 76, 887–896 (2023). https://doi.org/10.1007/s12666-022-02806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02806-z

Keywords

Navigation