Skip to main content
Log in

Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous titania (meso-TiO2) has received extensive attention owing to its versatile potential applications. This paper reports a low-temperature templating approach for the fabrication of meso-TiO2 using the peroxo titanic acid (PTA) sol as precursor and Pluronic P123 as nonionic template. The TGA, XRD, N2 sorption, FE-SEM and HRTEM were used to characterize the obtained samples. The results showed that meso-TiO2 with high surface area up to 163 m2·g–1 and large pore volume of 0.65 cm3·g–1 can be obtained. The mesopore sizes can be varied between 13 and 20 nm via this synthesis approach. The amount of P123 and the calcination conditions were found to have great influence on the mesoporous and crystalline structures of meso-TiO2. The photocatalytic activity testing clearly shows that the high surface area and bi-crystallinity phases of meso-TiO2 play important roles in enhancing photocatalytic properties of meso-TiO2 in photo-decomposing Rhodamine B in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boettcher S W, Fan J, Tsung C K, et al. Harnessing the sol–gel process for the assembly of non-silicate mesostructured oxide materials. Accounts of Chemical Research, 2007, 40(9): 784–792

    Article  Google Scholar 

  2. Li W, Wu Z, Wang J, et al. A perspective on mesoporous TiO2 materials. Chemistry of Materials, 2014, 26(1): 287–298

    Article  Google Scholar 

  3. Zhang R, Elzatahry A A, Al-Deyab S S, et al. Mesoporous titania: From synthesis to application. Nano Today, 2012, 7(4): 344–366

    Article  Google Scholar 

  4. Pan J H, Dou H, Xiong Z, et al. Porous photocatalysts for advanced water purifications. Journal of Materials Chemistry, 2010, 20(22): 4512–4528

    Article  Google Scholar 

  5. Oveisi H, Suzuki N, Beitollahi A, et al. Aerosol-assisted fabrication of mesoporous titania spheres with crystallized anatase structures and investigation of their photocatalitic properties. Journal of Sol-Gel Science and Technology, 2010, 56(2): 212–218

    Article  Google Scholar 

  6. Samiee L, Beitollahi A, Vinu A. Effect of calcination atmosphere on the structure and photocatalytic properties of titania mesoporous powder. Research on Chemical Intermediates, 2012, 38(7): 1467–1482

    Article  Google Scholar 

  7. Shamaila S, Sajjad A K L, Chen F, et al. Mesoporous titania with high crystallinity during synthesis by dual template system as an efficient photocatalyst. Catalysis Today, 2011, 175(1): 568–575

    Article  Google Scholar 

  8. Renuka N K, Praveen A K, Aravindakshan K K. Synthesis and characterisation of mesoporous anatase TiO2 with highly crystalline framework. Materials Letters, 2013, 91: 118–120

    Article  Google Scholar 

  9. Chang Y S, Lee Y C, Yuhara J, et al. Effect of water on the formation of nanostructured mesoporous titania. Current Applied Physics, 2011, 11(3): 486–491

    Article  Google Scholar 

  10. Chu S, Luo L L, Yang J C, et al. Low-temperature synthesis of mesoporous TiO2 photocatalyst with self-cleaning strategy to remove organic templates. Applied Surface Science, 2012, 258 (24): 9664–9667

    Article  Google Scholar 

  11. Xu J H, Dai W L, Li J X, et al. Novel core–shell structured mesoporous titania microspheres: Preparation, characterization and excellent photocatalytic activity in phenol abatement. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195(2–3): 284–294

    Article  Google Scholar 

  12. Mohamed M M, Bayoumy W A, Khairy M, et al. Structural features and photocatalytic behavior of titania and titania supported vanadia synthesized by polyol functionalized materials. Microporous and Mesoporous Materials, 2008, 109(1–3): 445–457

    Article  Google Scholar 

  13. Dong Q, Su H L, Zhang D, et al. Synthesis of hierarchical mesoporous titania with interwoven networks by eggshell membrane directed sol–gel technique. Microporous and Mesoporous Materials, 2007, 98(1-3): 344–351

    Article  Google Scholar 

  14. Chen L, Yao B D, Cao Y, et al. Synthesis of well-ordered mesoporous titania with tunable phase content and high photoactivity. Journal of Physical Chemistry C, 2007, 111(32): 11849–11853

    Article  Google Scholar 

  15. Tian C X, Yang Y, Pu H. Effect of calcination temperature on porous titania prepared from industrial titanyl sulfate solution. Applied Surface Science, 2011, 257(20): 8391–8395

    Article  Google Scholar 

  16. Baiju K V, Periyat P, Shajesh P, et al. Mesoporous gadolinium doped titania photocatalyst through an aqueous sol–gel method. Journal of Alloys and Compounds, 2010, 505(1): 194–200

    Article  Google Scholar 

  17. Shibata H, Mihara H, Mukai T, et al. Preparation and formation mechanism of mesoporous titania particles having crystalline wall. Chemistry of Materials, 2006, 18(9): 2256–2260

    Article  Google Scholar 

  18. Tian C X, Zhang Z, Hou J, et al. Surfactant/co-polymer template hydrothermal synthesis of thermally stable, mesoporous TiO2 from TiOSO4. Materials Letters, 2008, 62(1): 77–80

    Article  Google Scholar 

  19. Shibata H, Ogura T, Mukai T, et al. Direct synthesis of mesoporous titania particles having a crystalline wall. Journal of the American Chemical Society, 2005, 127(47): 16396–16397

    Article  Google Scholar 

  20. Song H, Chen T, Sun Y, et al. Controlled synthesis of porous flower-like TiO2 nanostructure with enhanced photocatalytic activity. Ceramics International, 2014, 40(7): 11015–11022

    Article  Google Scholar 

  21. Tang H, Zhang D, Tang G G, et al. Low temperature synthesis and photocatalytic properties of mesoporous TiO2 nanospheres. Journal of Alloys and Compounds, 2014, 591: 52–57

    Article  Google Scholar 

  22. Ge L, Xu M X. Fabrication and characterization of TiO2 photocatalytic thin film prepared from peroxo titanic acid sol. Journal of Sol-Gel Science and Technology, 2007, 43(1): 1–7

    Article  Google Scholar 

  23. Lee C K, Kim D K, Lee J H, et al. Preparation and characterization of peroxo titanic acid solution using TiCl3. Journal of Sol-Gel Science and Technology, 2004, 31(1–3): 67–72

    Article  Google Scholar 

  24. Kim G H, Lee C G, Kim I. Properties of TiO2 film prepared from titanium tetrachloride. Metals and Materials International, 2004, 10(5): 423–427

    Article  Google Scholar 

  25. Sasirekha N, Rajesh B, Chen Y W. Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent. Thin Solid Films, 2009, 518(1): 43–48

    Article  Google Scholar 

  26. Liu Y J, Aizawa M, Wang Z M, et al. Comparative examination of titania nanocrystals synthesized by peroxo titanic acid approach from different precursors. Journal of Colloid and Interface Science, 2008, 322(2): 497–504

    Article  Google Scholar 

  27. Zakharova G S, Andreikov E I. Effect of the precursor heat treatment procedure on the properties of titania photocatalysts. Inorganic Materials, 2012, 48(7): 727–731

    Article  Google Scholar 

  28. Wang W, Nguyen D T, Long H B, et al. High temperature and water-based evaporation-induced self-assembly approach for facile and rapid synthesis of nanocrystalline mesoporous TiO2. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(38): 15912–15920

    Article  Google Scholar 

  29. Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860

    Article  Google Scholar 

  30. Wan Y, Shi Y, Zhao D. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chemical Communications, 2007, (9): 897–926

    Article  Google Scholar 

  31. Wang W, Qi H, Long H, et al. A simple ternary non-ionic templating system for preparation of complex hierarchically mesomesoporous silicas with 3D interconnected large mesopores. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(15): 5363–5370

    Article  Google Scholar 

  32. Wang W, Shan W J, Ru H Q, et al. Short-time synthesis of SBA- 15s with large mesopores via partitioned cooperative selfassembly process based on sodium silicate. Journal of Sol-Gel Science and Technology, 2012, 64(1): 200–208

    Article  Google Scholar 

  33. Zhang H, Banfield J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. The Journal of Physical Chemistry B, 2000, 104(15): 3481–3487

    Article  Google Scholar 

  34. Wanka G, Hoffmann H, Ulbricht W. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)- poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules, 1994, 27(15): 4145–4159

    Article  Google Scholar 

  35. Yamada S, Wang Z, Mouri E, et al. Crystallization of titania ultrafine particles from peroxotitanic acid in aqueous solution in the present of polymer and incorporation into poly(methyl methacylate) via dispersion in organic solvent. Colloid & Polymer Science, 2009, 287(2): 139–146

    Article  Google Scholar 

  36. Bacsa R R, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B: Environmental, 1998, 16(1): 19–29

    Article  Google Scholar 

  37. Bakardjieva S, Šubrt J, Štengl V, et al. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Applied Catalysis B: Environmental, 2005, 58(3–4): 193–202

    Article  Google Scholar 

  38. Ohno T, Tokieda K, Higashida S, et al. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A, 2003, 244(2): 383–391

    Article  Google Scholar 

  39. Yan M, Chen F, Zhang J, et al. Preparation of controllable crystalline titania and study on the photocatalytic properties. The Journal of Physical Chemistry B, 2005, 109(18): 8673–8678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Hongqiang Ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D., Wang, W., Long, H. et al. Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2 . Front. Mater. Sci. 10, 23–30 (2016). https://doi.org/10.1007/s11706-016-0322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-016-0322-3

Keywords

Navigation