Skip to main content
Log in

Effect of calcination atmosphere on the structure and photocatalytic properties of titania mesoporous powder

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the work presented here, mesoporous titania (MTO) powders are synthesised by the sol–gel method using amphiphilic triblock copolymer as a template in two different calcination atmospheres, N2 and air. Various techniques such as sequential thermal analysis (STA), small-angle X-ray diffraction (SAXRD), wide-angle X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet (UV)–visible spectroscopy, high-resolution transmission electron microscopy (HRTEM) and N2-adsorption/desorption analysis were utilised to study the prepared samples. Furthermore, the photocatalytic activities of the prepared samples were evaluated from the photo-degradation analysis of methylene blue (MB). For the sample calcined at N2, the formation of an ordered mesostructure with a high specific surface area (172 m2 g−1), mesoporosity (48%) and enhanced photocatalytic activity were obtained compared to that of the sample calcined in air. The observed increased MB degradation for the latter is mainly attributed to the formation of higher specific surface area and mesoporosity. The availability of highly ordered open-pore channels could provide increased contacts between reactants in the solution and the active sites on the surface of titania mesoporous particles. Considering the photoactivities of the samples, it is revealed that the photocatalytic activity is enhanced, together with an increase in the surface defects in N2 atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Huo, J. Feng, F. Schuth, G.D. Stucky, Chem. Mater. 9, 14–17 (1997)

    Article  CAS  Google Scholar 

  2. G.A. Ozin, Adv. Mater. 4, 612–649 (1992)

    Article  CAS  Google Scholar 

  3. W. Wang, M. Song, Microporous Mesoporous Mater. 96, 255–261 (2006)

    Article  CAS  Google Scholar 

  4. S. Sakulkhaemaruethai, S. Pavasupree, Y. Suzuki, S. Yoshikawa, Mater. Lett. 59, 2965–2968 (2005)

    Article  CAS  Google Scholar 

  5. A. Taguchi, F. Schuth, Microporous Mesoporous Mater. 77, 1–45 (2005)

    Article  CAS  Google Scholar 

  6. D. Grosso, C. Boissiere, L. Nicole, C. Sanchez, J. Sol–Gel. Sci. Technol. 40, 141–154 (2006)

    Article  CAS  Google Scholar 

  7. Galo J. de A.A. Soler-Illia, E.L. Crepaldi, D. Grosso, C. Sanchez, Curr. Opin. Colloid Interface Sci. 8, 109–126 (2003)

    Google Scholar 

  8. S. Besson, T. Gacoin, C. Jacquiod, C. Ricolleau, D. Babonneau, J.-P. Boilot, J. Mater. Chem. 10, 1331–1336 (2000)

    Article  CAS  Google Scholar 

  9. E.L. Crepaldi, Galo J. de A.A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanchez, J. Am. Chem. Soc. 125, 9770–9786 (2003)

    Google Scholar 

  10. D. Grosso, A.R. Balkenende, P.-A. Albouy, M. Lavergne, L. Mazerolles, F. Babonneau, J. Mater. Chem. 10, 2085–2089 (2000)

    Article  CAS  Google Scholar 

  11. P. Innocenzi, P. Falcaro, D. Grosso, F. Babonneau, J. Phys. Chem. B 107, 4711–4717 (2003)

    Article  CAS  Google Scholar 

  12. T. Clark, J.D. Ruiz, H.Y. Fan, C.J. Brinker, B.I. Swanson, A.N. Parikh, Chem. Mater. 12, 3879–3884 (2000)

    Article  CAS  Google Scholar 

  13. D. Grosso, I.G. Soler, E.L. Crepaldi, F. Cagnol, C. Sinturel, A. Bourgeois, B.A. Brunet, H. Amenitsch, P.A. Albouy, C. Sanchez, Chem. Mater. 15, 4562–4570 (2003)

    Article  CAS  Google Scholar 

  14. B.L. Kirsch, E.K. Richman, A.E. Riley, S.H. Tolbert, J. Phys. Chem. B 108, 12698–12706 (2004)

    Article  CAS  Google Scholar 

  15. L. Zhao, Y. Yu, L. Song, M. Ruan, X. Hu, A. Larbot, Appl. Catal. A Gen. 263, 171–177 (2004)

    Article  CAS  Google Scholar 

  16. F. Bosc, A. Ayral, P.-A. Albouy, C. Guizard, Chem. Mater. 15, 2463–2468 (2003)

    Article  CAS  Google Scholar 

  17. F. Bosc, A. Ayral, P.-A. Albouy, L. Datas, C. Guizard, Chem. Mater. 16, 2208–2214 (2004)

    Article  CAS  Google Scholar 

  18. C.G. Granqvis, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995)

    Google Scholar 

  19. P.C.A. Alberius, K.L. Frindell, R.C. Hayward, E.J. Kramer, G.D. Stucky, B.F. Chmelka, Chem. Mater. 14, 3284–3294 (2002)

    Article  CAS  Google Scholar 

  20. J.C. Yu, L. Zhang, J. Yu, New J. Chem. 26, 416–420 (2002)

    Article  CAS  Google Scholar 

  21. Y.Q. Wang, S.G. Chen, X.H. Tang, O. Palchik, A. Zaban, Y. Koltypin, A. Gedanken, J. Mater. Chem. 11, 521–526 (2001)

    Article  CAS  Google Scholar 

  22. S. Yuan, Q. Sheng, J. Zhang, F. Chen, M. Anpo, Q. Zhang, Microporous Mesoporous Mater. 79, 93–99 (2005)

    Article  CAS  Google Scholar 

  23. J. Madara’sz, M. Okuya, P. Varga, S. Kaneko, G. Pokol, J. Anal. Appl. Pyrolysis 79, 479–483 (2007)

    Article  Google Scholar 

  24. Y.H. Yue, Z. Gao, Chem. Commun. 18, 1755–1756 (2000)

    Article  Google Scholar 

  25. W. Chen, Y. Geng, X.-D. Sun, Q. Cai, H.-De. Li, D. Weng, Microporous Mesoporous Mater. 111, 219–227 (2008)

    Article  CAS  Google Scholar 

  26. Galo J. de A.A. Soler-Illia, A. Louis, C. Sanchez, Chem. Mater. 14, 750–759 (2002)

    Google Scholar 

  27. P. Supphasrirongjaroen, P. Praserthdam, J. Panpranot, D. Na-Ranongb, O. Mekasuwandumrong, Chem. Eng. J. 138, 622–627 (2008)

    Article  CAS  Google Scholar 

  28. G.-S. Shao, L. Liu, T.-Yi. Ma, F.-Y. Wang, T.-Z. Ren, Z.-Y. Yuan, Chem. Eng. J. 160, 370–377 (2010)

    Article  CAS  Google Scholar 

  29. M. Paul, N. Pal, M. Ali, A. Bhaumik, J. Mol. Catal. A Chem. 330, 49–55 (2010)

    Article  CAS  Google Scholar 

  30. Q. Xiao, J. Zhang, C. Xiao, Z.C. Si, X.K. Tan, Sol. Energy 82, 706–713 (2008)

    Article  CAS  Google Scholar 

  31. H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett. 32, 772–773 (2003)

    Article  CAS  Google Scholar 

  32. K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, Langmuir 20, 2900–2907 (2004)

    Article  CAS  Google Scholar 

  33. P.M. Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films 358, 122–130 (2000)

    Article  CAS  Google Scholar 

  34. Z. Wu, B. Jiang, Y. Liu, Appl. Catal. B Environ 79, 347–355 (2008)

    Article  CAS  Google Scholar 

  35. J.C. Yu, X. Wang, X. Fu, Chem. Mater. 16, 1523–1530 (2004)

    Article  CAS  Google Scholar 

  36. Y. Sakatani, D. Grosso, L. Nicole, C. Boissiere, Galo J. de A.A. Soler-Illia, C. Sanchez, J. Mater. Chem. 16, 77–82 (2006)

    Google Scholar 

  37. X. Wang, J.C. Yu, C. Ho, Y. Hou, X. Fu, Langmuir 21, 2552–2559 (2005)

    Article  CAS  Google Scholar 

  38. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 49, 1–14 (2004)

    Article  CAS  Google Scholar 

  39. R.W. Matthews, J. Chem. Soc. Faraday Trans. 1, 1291–1302 (1989)

    Google Scholar 

  40. C.-H. Wu, J.-M. Chern, Ind. Eng. Chem. Res. 45, 6450–6457 (2006)

    Article  CAS  Google Scholar 

  41. K. Suriye, P. Praserthdam, B. Jongsomjit, Appl. Surf. Sci. 253, 3849–3855 (2007)

    Article  CAS  Google Scholar 

  42. A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications (Bkc Inc., Tokyo, 1999)

    Google Scholar 

  43. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269–8285 (2005)

    Article  CAS  Google Scholar 

  44. Y. Nakaoka, Y. Nosaka, J. Photochem. Photobiol. A 110, 299–305 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of Iran University of Science and Technology (IUST), Iran Nanotechnology Initiative Council (INIC) and the Research Institute of Petroleum Industry (RIPI). Further, we would also like to appreciate the kind support of National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan, during the sabbatical leave of one of the authors (L.S.) during her PhD programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Samiee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samiee, L., Beitollahi, A. & Vinu, A. Effect of calcination atmosphere on the structure and photocatalytic properties of titania mesoporous powder. Res Chem Intermed 38, 1467–1482 (2012). https://doi.org/10.1007/s11164-011-0477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0477-6

Keywords

Navigation