Skip to main content
Log in

Hydrothermal synthesis of mesoporous TiO2–ZnO nanocomposite for photocatalytic degradation of methylene blue under UV and visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mesoporous ZnO–TiO2 was synthesized successfully by a one-step hydrothermal procedure using titanium sulfate and Zinc nitrate hexahydrate as precursors, and Pluronic P123 as a template. The prepared ZnO–TiO2 materials were heat treated at 400, 600, 800 and 1000 °C to remove the template and increase the degree of crystallization. Field emission scanning electron microscopy, wide angle X-ray diffraction, Fourier transformed infrared spectroscopy, transmission electron microscopy and N2 adsorption–desorption experiments were used to characterize the synthesized powders. Comparison photocatalytic investigations for the prepared materials and commercially available P25 were carried out under identical UV and visible light to understand the effect of the achieved phases and surface area on photocatalytic rate constant and percentage degradation. Results show that the sample which was heat treated at 800 °C (S-800) presents a very high performance under visible light and around 60% of the methylene blue (MB) solution can be degraded by this catalyst in spite of its low surface area. The high efficiency of this sample under visible light can be related to its high degree of crystallinity, formation of anatase and titanium–zinc oxide phases and interfacial coupling between ZnO and TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Cooper, Colour in Dyehouse Effluent (Society of dyers and colourists, Bradford, 1995)

    Google Scholar 

  2. Y.M. Slokar, A.M. Le Marechal, Dye. Pigment. 37, 335 (1998)

    Article  Google Scholar 

  3. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A Gen. 359, 25 (2009)

    Article  Google Scholar 

  4. B. Mirtaheri, M. Shokouhimehr, A. Beitollahi, J. Sol-Gel. Sci. Technol. 82, 148 (2017)

    Article  Google Scholar 

  5. J. Strunk, K. Köhler, X. Xia, M. Muhler, Surf. Sci. 603, 1776 (2009)

    Article  Google Scholar 

  6. A. Taufik, A. Albert, R. Saleh, J. Photochem. Photobiol. A Chem. 344, 149 (2017)

    Article  Google Scholar 

  7. B. Mazinani, A.K. Masrom, A. Beitollahi, R. Luque, Ceram. Int. 40, 11525 (2014)

    Article  Google Scholar 

  8. B. Mazinani, A. Beitollahi, A.K. Masrom, N. Yahya, T.S.Y. Choong, S.M. Ibrahim, J. Javadpour, Res. Chem. Intermed. 38, 1733 (2012)

    Article  Google Scholar 

  9. B. Haghighatzadeh, M.S. Mazinani, L. Asl, Bakhtiari, Desalin. Water Treat. 80, 156–163 (2017)

    Google Scholar 

  10. S.M. Ibrahim, A.K. Masrom, B. Mazinani, S. Radiman, F.M. Jamil, A. Beitollahi, N. Negishi, N. Yahya, Res. Chem. Intermed. 39, 1003 (2013)

    Article  Google Scholar 

  11. A. Mazinani, S. Beitollahi, A.K. Radiman, S.M. Masrom, J. Ibrahim, F.M.D. Javadpour, Jamil, J. Alloys Compd. 519, 72 (2012)

    Article  Google Scholar 

  12. S. Logothetidis, A. Laskarakis, S. Kassavetis, S. Lousinian, C. Gravalidis, G. Kiriakidis, Thin Solid Films 516, 1345 (2008)

    Article  Google Scholar 

  13. Y. Liu, S. Wei, W. Gao, J. Hazard. Mater. 287, 59 (2015)

    Article  Google Scholar 

  14. R.S. Mane, W.J. Lee, H.M. Pathan, S.-H. Han, J. Phys. Chem. B 109, 24254 (2005)

    Article  Google Scholar 

  15. K. Assaker, B. Lebeau, L. Michelin, P. Gaudin, C. Carteret, L. Vidal, M. Bonne, J.L. Blin, J. Alloys Compd. 649, 1 (2015)

    Article  Google Scholar 

  16. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, J. Hazard. Mater. 170, 560 (2009)

    Article  Google Scholar 

  17. Y. Zhao, C. Li, X. Liu, F. Gu, H.L. Du, L. Shi, Appl. Catal. B Environ. 79, 208 (2008)

    Article  Google Scholar 

  18. F. Rahmani, M. Ardyanian, J. Mater. Sci. Mater. Electron. 1, 4285 (2018)

    Article  Google Scholar 

  19. L. Jing, Z. Xu, X. Sun, J. Shang, W. Cai, Appl. Surf. Sci. 180, 308 (2001)

    Article  Google Scholar 

  20. T. Wagner, T. Waitz, J. Roggenbuck, M. Fröba, C.-D. Kohl, M. Tiemann, Thin Solid Films 515, 8360 (2007)

    Article  Google Scholar 

  21. F. Chen, Y.B. Huang, R.A. Cheng, Caruso, Adv. Mater. 21, 2206 (2009)

    Article  Google Scholar 

  22. M.A. Habib, M.T. Shahadat, N.M. Bahadur, I.M.I. Ismail, A.J. Mahmood, Int. Nano Lett. 3, 5 (2013)

    Article  Google Scholar 

  23. Y. Wang, S. Zhu, X. Chen, Y. Tang, Y. Jiang, Z. Peng, H. Wang, Appl. Surf. Sci. 307, 263 (2014)

    Article  Google Scholar 

  24. P. Scherrer, Nachr. Ges. Wiss. Göttingen 2, 98 (1918)

    Google Scholar 

  25. M.S.P. Francisco, V.R. Mastelaro, Chem. Mater. 14, 2514 (2002)

    Article  Google Scholar 

  26. G. Göndöz, Chemistry, Materials, and Properties of Surface Coatings: Traditional and Evolving Technologies (DEStech Publications, Inc, Lancaster, 2015)

    Google Scholar 

  27. T.A. Khalyavka, E.I. Kapinus, T.I. Viktorova, N.N. Tsyba, Theor. Exp. Chem. 45, 223 (2009)

    Article  Google Scholar 

  28. V.G. Deshmane, R.Y. Abrokwah, D. Kuila, J. Mol. Catal. A Chem. 408, 202 (2015)

    Article  Google Scholar 

  29. J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, P. Wu, Surf. Coat. Technol. 204, 205 (2009)

    Article  Google Scholar 

  30. K. Karthik, S.K. Pandian, N.V. Jaya, Appl. Surf. Sci. 256, 6829 (2010)

    Article  Google Scholar 

  31. J. Wang, J. Li, Y. Xie, C. Li, G. Han, L. Zhang, R. Xu, X. Zhang, J. Environ. Manage. 91, 677 (2010)

    Article  Google Scholar 

  32. S. Moradi, P. Aberoomand Azar, S. Raeis Farshid, S. Abedini, M.H. Khorrami, Givianrad, Int. J. Chem. Eng. (2012). https://doi.org/10.1155/2012/215373

    Google Scholar 

  33. K.S.W. Sing, Pure Appl. Chem. 57, 603 (1985)

    Article  Google Scholar 

  34. B. Mazinani, A. Beitollahi, A.K. Masrom, N. Yahya, T.S.Y. Choong, S.M. Ibrahim, J. Javadpour, Res. Chem. Intermed. 38, 373 (2012)

    Article  Google Scholar 

  35. H. Chen, S. Zhang, J. Hu, Li, J. Phys. Chem. C 112, 117 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Center for International Scientific Studies & Collaboration (CISSC). Further, we are also grateful for the kind collaboration of Kochi University (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Mazinani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazinani, B., Zalani, N.M., Sakaki, M. et al. Hydrothermal synthesis of mesoporous TiO2–ZnO nanocomposite for photocatalytic degradation of methylene blue under UV and visible light. J Mater Sci: Mater Electron 29, 11945–11950 (2018). https://doi.org/10.1007/s10854-018-9296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9296-5

Navigation