Skip to main content
Log in

Aerosol-assisted fabrication of mesoporous titania spheres with crystallized anatase structures and investigation of their photocatalitic properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We demonstrate practical aerosol-assisted approach to synthesize spherical mesoporous titania particles with high surface areas. Scanning electron microscopy observation of the spray-dried products clearly shows spherical morphology. To remove surfactants and enhance crystallinity, the spray-dried products are calcined under various temperatures. The crystalline structures inside the particles are carefully detected by wide-angle XRD measurements. With increase of the calcination temperatures, anatase crystal growth proceeds and transformation from anatase to rutile is occurred. The effect of various calcination temperatures on the mesostructures is also studied by using N2 adsorption desorption isotherms. The mesoporous titania particles calcined at 350, 400, and 500 °C exhibit type IV isotherms with a capillary condensation step and shows a hysteresis loop, which is a characteristic of mesoporous materials. The reduction in the surface areas and the pore volumes is confirmed by increasing the calcination temperatures, while the average pore diameters are increased gradually. This is attributed to the distortion of the mesostructures due to the grain growth of the anatase phase and the transformation to the rutile phase during the calcination process. As a preliminary experimental photocatalytic activity, oxidative decomposition of acetaldehyde under UV irradiation is examined. The mesoporous titania calcined at 400 °C shows the highest photocatalytic activity, due to both high surface area and well-developed anatase crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988

    Article  CAS  Google Scholar 

  2. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:1535

    Article  CAS  Google Scholar 

  3. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  ADS  Google Scholar 

  4. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  5. Attard GS, Glyde JC, Göltner CG (1995) Nature 378:366

    Article  CAS  ADS  Google Scholar 

  6. Aksay IA, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger PM, Gruner SM (1996) Science 273:892

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Besson S, Ricolleau C, Gacoin T, Jacquiod C, Boilot JP (2000) J Phys Chem B 104:12095

    Article  CAS  Google Scholar 

  9. Grosso D, Balkenende AR, Albouy PA, Ayral A, Amenitsch H, Babonneau F (2001) Chem Mater 13:1848

    Article  CAS  Google Scholar 

  10. Alberious PCA, Frindell KL, Hayward RC, Kramer EJ, Stucky GD, Chmelka BF (2002) Chem Mater 14:3284

    Article  Google Scholar 

  11. Bandyopadhyaya R, Roth EN, Rozen RY, Regev O (2003) Chem Mater 15:3619

    Article  CAS  Google Scholar 

  12. Miyata H, Kawashima Y, Itoh M, Watanabe M (2005) Chem Mater 17:5323

    Article  CAS  Google Scholar 

  13. Wu CW, Yamauchi Y, Ohsuna T, Kuroda K (2006) J Mater Chem 16:3091

    Article  CAS  Google Scholar 

  14. Yamauchi Y, Sawada M, Komatsu M, Sugiyama A, Osaka T, Hirota N, Sakka Y, Kuroda K (2007) Chem Asian J 2:1505

    Article  CAS  PubMed  Google Scholar 

  15. Grosso D, Soler-Illia GJAA, Crepaldi EL, Charleux B, Sanchez C (2003) Adv Funct Mater 13:37

    Article  CAS  Google Scholar 

  16. Wu CW, Ohsuna T, Kuwabara M, Kuroda K (2006) J Am Chem Soc 128:4544

    Article  CAS  PubMed  Google Scholar 

  17. Crepaldi EL, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) J Am Chem Soc 125:9770

    Article  CAS  PubMed  Google Scholar 

  18. Shibata H, Mihara H, Mukai T, Ogura T, Kohno H, Ohkubo T, Sakai H, Abe M (2006) Chem Mater 18:2256

    Article  CAS  Google Scholar 

  19. Kondo JN, Domen K (2008) Chem Mater 20:835

    Article  CAS  ADS  Google Scholar 

  20. Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissière C, Antonietti M, Sanchez C (2004) Chem Mater 16:2948

    Article  CAS  Google Scholar 

  21. Guo XF, Kim YS, Kim GJ (2009) J Phys Chem C 113:8313

    Article  CAS  Google Scholar 

  22. Kondo JN, Yamashita T, Nakajima K, Lu D, Hara M, Domen K (2005) J Mater Chem 15:2035

    Article  CAS  Google Scholar 

  23. Fujishima A, Honda K, Kikuchi S (1969) Kogyo Kagaku Zasshi 72:108

    CAS  Google Scholar 

  24. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  ADS  PubMed  Google Scholar 

  25. Wold A (1993) Chem Mater 5:280

    Article  CAS  Google Scholar 

  26. Dagan G, Tomkiewicz M (1993) J Phys Chem 97:12651

    Article  CAS  Google Scholar 

  27. Ohtani B, Ogawa Y, Nishimoto SI (1997) J Phys Chem B 101:3746

    Article  CAS  Google Scholar 

  28. Yin S, Sato T (2000) Ind Eng Chem Res 39:4526

    Article  CAS  Google Scholar 

  29. Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Justin CC (2004) Appl Catal B Environ 54:51

    Google Scholar 

  30. Weng W, Higuchi T, Suzuki M, Fukuoka T, Shimomura T, Ono M, Radhakrishnan L, Wang H, Suzuki N, Oveisi H, Yamauchi Y (2010) Angew Chem Int Ed 49:3956

    CAS  Google Scholar 

  31. Mukherjee T, Hazra SK, Basu S (2006) Mater Manuf Process 21:247

    Article  CAS  Google Scholar 

  32. Tan J, Wlodarski W, Kalantar-Zadeh K (2007) Thin Solid Films 515:8738

    Article  CAS  ADS  Google Scholar 

  33. Yadav BC, Yadav RC, Dubey GC (2009) Optica Appl 39:617

    CAS  Google Scholar 

  34. You X, Chen F, Zhang J (2005) J Sol–Gel Sci Technol 34:181

    Article  CAS  Google Scholar 

  35. Kim DS, Kwak SY (2009) Environ Sci Technol 43:148

    Article  CAS  PubMed  Google Scholar 

  36. Drygaś M, Czosnek C, Paine RT, Janik JF (2006) Chem Mater 18:3122

    Article  Google Scholar 

  37. Wu Z, Lu Y (2010) J Sol–Gel Sci Technol 53:287

    Article  CAS  Google Scholar 

  38. Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Nature 398:223

    Article  CAS  ADS  Google Scholar 

  39. Andersson N, Alberius PCA, Pedersen JS, Bergström L (2004) Microporous Mesoporous Mater 72:175

    Article  CAS  Google Scholar 

  40. Areva S, Boissière C, Grosso D, Asakawa T, Sanchez C, Lindén M (2004) Chem Commun 1630

  41. Sörensen MH, Corkery RW, Pedersen JS, Rosenholm J, Alberius PC (2008) Microporous Mesoporous Mater 113:1

    Article  Google Scholar 

  42. Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) J Am Chem Soc 122:5258

    Article  CAS  Google Scholar 

  43. Ji X, Hu Q, Hampsey JE, Qiu X, Gao L, He J, Lu Y (2006) Chem Mater 18:2265

    Article  CAS  Google Scholar 

  44. Melnyk IV, Zub YL, Véron E, Massiot D, Cacciaguerra T, Alonso B (2008) J Mater Chem 18:1368

    Article  CAS  Google Scholar 

  45. Suh WH, Jang AR, Suh YH, Suslick KS (2006) Adv Mater 18:1832

    Article  CAS  Google Scholar 

  46. López BJ, Boissière C, Chanéac C, Grosso D, Vasseur S, Miraux S, Duguet E, Sanchez C (2007) J Mater Chem 17:1563

    Article  Google Scholar 

  47. Yan Y, Zhang F, Meng Y, Tu B, Zhao D (2007) Chem Commun 2867

  48. Tsung CK, Fan J, Zheng N, Shi Q, Forman AJ, Wang J, Stucky GD (2008) Angew Chem Int Ed 47:8682

    Article  CAS  Google Scholar 

  49. Lu Y, McCaughey BF, Wang D, Hampsey JE, Doke N, Yang Z, Brinker CJ (2003) Adv Mater 15:1733

    Article  CAS  Google Scholar 

  50. Beitollahi A, Daie AHH, Samie L, Akbarnejad MM (2010) J Alloy Comp 490:311

    Article  CAS  Google Scholar 

  51. Yamauchi Y, Gupta P, Fukata N, Sato K (2009) Chem Lett 38:78

    Article  CAS  Google Scholar 

  52. Yamauchi Y, Takeuchi F, Todoroki S, Sakka Y, Inoue S (2008) Chem Lett 37:72

    Article  CAS  Google Scholar 

  53. Yamauchi Y, Suzuki N, Sato K, Fukata N, Murakami M, Shimizu T (2009) Bull Chem Soc Jpn 82:1039

    Article  CAS  Google Scholar 

  54. Yamauchi Y, Gupta P, Sato K, Fukata N, Todoroki S, Inoue S, Kishimoto S (2009) J Ceram Soc Jpn 117:198

    Article  CAS  Google Scholar 

  55. Suzuki N, Gupta P, Sukegawa H, Inomata K, Inoue S, Yamauchi Y (2010) J Nanosci Nanotech 10:6612

    Article  Google Scholar 

  56. Suzuki N, Yamauchi Y (2010) J Nanosci Nanotech 10:5759

    Article  Google Scholar 

  57. Yamauchi Y, Suzuki N, Gupta P, Sato K, Fukata N, Murakami M, Shimizu T, Inoue S, Kimura T (2009) Sci Technol Adv Mater 10:025005

    Article  Google Scholar 

  58. Yamauchi Y, Kimura T (2008) Chem Lett 37:892

    Article  CAS  Google Scholar 

  59. Iskandar F, Nandiyanto ABD, Yun KM, Hogan CJ Jr, Okuyama K, Biswas P (2007) Adv Mater 19:1408

    Article  CAS  Google Scholar 

  60. Hagura N, Nandiyanto ABD, Iskandar F, Okuyama K (2009) Chem Lett 38:1076

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Yamauchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oveisi, H., Suzuki, N., Beitollahi, A. et al. Aerosol-assisted fabrication of mesoporous titania spheres with crystallized anatase structures and investigation of their photocatalitic properties. J Sol-Gel Sci Technol 56, 212–218 (2010). https://doi.org/10.1007/s10971-010-2296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2296-4

Keywords

Navigation