Skip to main content
Log in

Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

In this work, three kinds of ultrathin tremella-like MnO2 have been simply synthesized by decomposing KMnO4 under mild hydrothermal conditions. When applied as electrode materials, they all exhibited excellent electrochemical performance. The asprepared MnO2 samples were characterized by means of XRD, SEM, TEM and XPS. Additionally, the relationship of the crystalline nature with the electrochemical performance was investigated. Among the three samples, the product with the poorest crystallinity had the highest capacitance of 220 F/g at a current density of 0.1 A/g. It is thought that the ultrathin MnO2 nanostructures can serve as promising electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang H, Sun T, Li C, et al. Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances. Journal of Materials Chemistry, 2012, 22 (6): 2751–2756

    Article  Google Scholar 

  2. Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. Journal of Physical Chemistry C, 2008, 112(11): 4406–4417

    Article  Google Scholar 

  3. Yan Y, Cheng Q, Zhu Z, et al. Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes. Journal of Power Sources, 2013, 240: 544–550

    Article  Google Scholar 

  4. Jiang H, Ma J, Li C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Advanced Materials, 2012, 24(30): 4197–4202

    Article  Google Scholar 

  5. Yan Y, Cheng Q, Wang G, et al. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. Journal of Power Sources, 2011, 196(18): 7835–7840

    Article  Google Scholar 

  6. Zhang Y, Li J, Kang F, et al. Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications. International Journal of Hydrogen Energy, 2012, 37(1): 860–866

    Article  Google Scholar 

  7. Lei Z, Zhang J, Zhao X. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. Journal of Materials Chemistry, 2012, 22(1): 153–160

    Article  Google Scholar 

  8. Wei W, Huang X, Tao Y, et al. Enhancement of the electrocapacitive performance of manganese dioxide by introducing a microporous carbon spheres network. Physical Chemistry Chemical Physics, 2012, 14(17): 5966–5972

    Article  Google Scholar 

  9. Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors. Energy & Environmental Science, 2013, 6(1): 41–53

    Article  Google Scholar 

  10. Meher S K, Rao G R. Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. Journal of Power Sources, 2012, 215: 317–328

    Article  Google Scholar 

  11. Subramanian V, Zhu H, Vajtai R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. The Journal of Physical Chemistry B, 2005, 109(43): 20207–20214

    Article  Google Scholar 

  12. Fischer A E, Pettigrew K A, Rolison D R, et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Letters, 2007, 7(2): 281–286

    Article  Google Scholar 

  13. Hou Y, Cheng Y, Hobson T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Letters, 2010, 10(7): 2727–2733

    Article  Google Scholar 

  14. Toupin M, Brousse T, Bélanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chemistry of Materials, 2002, 14(9): 3946–3952

    Article  Google Scholar 

  15. Zhang L, Kang L, Lv H, et al. Controllable synthesis, characterization, and electrochemical properties of manganese oxide nanoarchitectures. Journal of Materials Research, 2008, 23 (03): 780–789

    Article  Google Scholar 

  16. Zhou J, Yu L, Sun M, et al. Novel synthesis of birnessite-type MnO2 nanostructure for water treatment and electrochemical capacitor. Industrial & Engineering Chemistry Research, 2013, 52 (28): 9586–9593

    Article  Google Scholar 

  17. Wang Y T, Lu A H, Zhang H L, et al. Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. The Journal of Physical Chemistry C, 2011, 115(13): 5413–5421

    Article  Google Scholar 

  18. Chen R, Zavalij P, Whittingham MS. Hydrothermal synthesis and characterization of KxMnOy H2O. Chemistry of Materials, 1996, 8(6): 1275–1280

    Article  Google Scholar 

  19. Hashemzadeh F, Motlagh M M K, Maghsoudipour A. A comparative study of hydrothermal and sol–gel methods in the synthesis of MnO2 nanostructures. Journal of Sol-Gel Science and Technology, 2009, 51(2): 169–174

    Article  Google Scholar 

  20. Li Q, Lu X F, Xu H, et al. Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2014, 6(4): 2726–2733

    Article  Google Scholar 

  21. Xu M, Kong L, Zhou W, et al. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. The Journal of Physical Chemistry C, 2007, 111 (51): 19141–19147

    Article  Google Scholar 

  22. Brousse T, Toupin M, Dugas R, et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. Journal of the Electrochemical Society, 2006, 153 (12): A2171–A2180

    Article  Google Scholar 

  23. Ming B, Li J, Kang F, et al. Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. Journal of Power Sources, 2012, 198: 428–431

    Article  Google Scholar 

  24. Jiang H, Li C, Sun T, et al. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale, 2012, 4(3): 807–812

    Article  Google Scholar 

  25. Dai Y, Jiang H, Hu Y, et al. Controlled synthesis of ultrathin hollow mesoporous carbon nanospheres for supercapacitor applications. Industrial & Engineering Chemistry Research, 2014, 53(8): 3125–3130

    Article  Google Scholar 

  26. Zhu Z, Hu Y, Jiang H, et al. A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors. Journal of Power Sources, 2014, 246: 402–408

    Article  Google Scholar 

  27. Zhao Y, Meng Y, Jiang P. Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials. Journal of Power Sources, 2014, 259: 219–226

    Article  Google Scholar 

  28. Zhao M Q, Ren C E, Ling Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 2015, 27(2): 339–345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanjin Tian or Chang-An Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Tian, C., Li, S. et al. Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes. Front. Mater. Sci. 9, 234–240 (2015). https://doi.org/10.1007/s11706-015-0306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-015-0306-8

Keywords

Navigation