Skip to main content
Log in

Improved energy recovery from dark fermented cane molasses using microbial fuel cells

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A major limitation associated with fermentative hydrogen production is the low substrate conversion efficiency. This limitation can be overcome by integrating the process with a microbial fuel cell (MFC) which converts the residual energy of the substrate to electricity. Studies were carried out to check the feasibility of this integration. Biohydrogen was produced from the fermentation of cane molasses in both batch and continuous modes. A maximum yield of about 8.23 mol H2/kg CODremoved was observed in the batch process compared to 11.6 mol H2/kg CODremoved in the continuous process. The spent fermentation media was then used as a substrate in an MFC for electricity generation. The MFC parameters such as the initial anolyte pH, the substrate concentration and the effect of pre-treatment were studied and optimized to maximize coulombic efficiency. Reductions in COD and total carbohydrates were about 85% and 88% respectively. A power output of 3.02 W/m3 was obtained with an anolyte pH of 7.5 using alkali pre-treated spent media. The results show that integrating a MFC with dark fermentation is a promising way to utilize the substrate energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elam C C, Padró C E G, Sandrock G, Luzzi A, Lindblad P, Hagen E F. Realizing the hydrogen future: the International Energy Agency’s efforts to advance hydrogen energy technologies. International Journal of Hydrogen Energy, 2003, 28(6): 601–607

    Article  CAS  Google Scholar 

  2. Nayak B K, Pandit S, Das D. Biohydrogen. In: Kennes C, Veigaría C, editors. Air Pollution Prevention and Control. JohnWiley & Sons Ltd, 2013, 345–381

    Chapter  Google Scholar 

  3. Oh Y K, Raj S M, Jung G Y, Park S. Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology, 2011, 102(18): 8357–8367

    Article  CAS  Google Scholar 

  4. Das D, Vezirolu T N. Hydrogen production by biological processes: A survey of literature. International Journal of Hydrogen Energy, 2001, 26(1): 13–28

    Article  CAS  Google Scholar 

  5. Levin D B, Pitt L, Love M. Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 2004, 29(2): 173–185

    Article  CAS  Google Scholar 

  6. Jung G Y, Jung H O, Kim J R, Ahn Y, Park S. Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnology Letters, 1999, 21(6): 525–529

    Article  CAS  Google Scholar 

  7. Benemann J. Hydrogen biotechnology: progress and prospects. Nature Biotechnology, 1996, 14(9): 1101–1103

    Article  CAS  Google Scholar 

  8. Mohan S V, Srikanth S, Velvizhi G, Babu ML. Microbial Fuel Cells for Sustainable Bioenergy Generation: Principles and Perspective Applications. In: Gupta V K, Tuohy M G, eds. Biofuel Technologies. Berlin: Springer Berlin Heidelberg, 2013, 335–368

    Chapter  Google Scholar 

  9. Momirlan M, Veziroglu T. Current status of hydrogen energy. Renewable & Sustainable Energy Reviews, 2002, 6(1–2): 141–179

    Article  CAS  Google Scholar 

  10. Lovley D R. The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology, 2008, 19(6): 564–571

    Article  CAS  Google Scholar 

  11. Logan B E, Regan J M. Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 2006, 14(12): 512–518

    Article  CAS  Google Scholar 

  12. Torres C I, Marcus A K, Lee H S, Parameswaran P, Krajmalnik-Brown R, Rittmann B E. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews, 2010, 34(1): 3–17

    Article  CAS  Google Scholar 

  13. Oh S T, Kim J R, Premier G C, Lee T H, Kim C, Sloan W T. Sustainable wastewater treatment: How might microbial fuel cells contribute. Biotechnology Advances, 2010, 28(6): 871–881

    Article  CAS  Google Scholar 

  14. Guwy A J, Dinsdale R M, Kim J R, Massanet-Nicolau J, Premier G. Fermentative biohydrogen production systems integration. Bioresource Technology, 2011, 102(18): 8534–8542

    Article  CAS  Google Scholar 

  15. Sharma Y, Li B. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC). International Journal of Hydrogen Energy, 2010, 35(8): 3789–3797

    Article  CAS  Google Scholar 

  16. Mohanakrishna G, Venkata Mohan S, Sarma P N. Utilizing acid-rich effluents of the fermentative hydrogen production process as a substrate for harnessing bioelectricity: An integrative approach. International Journal of Hydrogen Energy, 2010, 35(8): 3440–3449

    Article  CAS  Google Scholar 

  17. Wang A, Sun D, Cao G, Wang H, Ren N, Wu W M, Logan B E. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technology, 2011, 102(5): 4137–4143

    Article  CAS  Google Scholar 

  18. Park M J, Jo J H, Park D, Lee D S, Park J M. Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. International Journal of Hydrogen Energy, 2010, 35(12): 6194–6202

    Article  CAS  Google Scholar 

  19. Vatsala T M. Hydrogen production from (cane-molasses) stillage by Citrobacter freundii and its use in improving methanogenesis. International Journal of Hydrogen Energy, 1992, 17(12): 923–927

    Article  CAS  Google Scholar 

  20. González T, Terrón MC, Yagüe S, Zapico E, Galletti G C, González A E. Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp. I-62 (CECT 20197). Rapid Communications in Mass Spectrometry, 2000, 14(15): 1417–1424

    Article  Google Scholar 

  21. Singhania R R, Patel A K, Christophe G, Fontanille P, Larroche C. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresource Technology, 2013, 145: 166–174

    Article  CAS  Google Scholar 

  22. Poggi-Varaldo H M, Carmona-Martínez A, Vázquez-Larios A L, Solorza-Feria O.Effect of inoculum type on the performance of a microbial fuel cell fed with spent organic extracts from hydrogenogenic fermentation of organic solid wastes. Journal of New Materials for Electrochemical Systems, 2009, 12: 049–054

    CAS  Google Scholar 

  23. Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry, 2000, 35(6): 589–593

    Article  CAS  Google Scholar 

  24. Kumar N, Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme and Microbial Technology, 2001, 29(4–5): 280–287

    Article  CAS  Google Scholar 

  25. Khilari S, Pandit S, Ghangrekar M M, Das D, Pradhan D. Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Advances, 2013, 3(21): 7902–7911

    Article  CAS  Google Scholar 

  26. Behera M, Ghangrekar M M. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology, 2009, 100(21): 5114–5121

    Article  CAS  Google Scholar 

  27. Lay J J, Li Y Y, Noike T. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Research, 1997, 31(6): 1518–1524

    Article  CAS  Google Scholar 

  28. Standard Methods for the Examination of Water and Wastewater. 20th Ed. American Public Health Association (APHA), American Water Works Association, Water Pollution Control Federation, Washington DC. 1998, 141

    Google Scholar 

  29. Logan B E, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 2006, 40(17): 5181–5192

    Article  CAS  Google Scholar 

  30. Logan B E. Microbial Fuel Cells. 1st ed. Wiley-Interscience, 2008, 216

    Google Scholar 

  31. Loewus F A. Improvement in anthrone method for determination of carbohydrates. Analytical Chemistry, 1952, 24(1): 219–219

    Article  CAS  Google Scholar 

  32. Das D, Veziroğlu T N. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 2001, 26(1): 13–28

    Article  CAS  Google Scholar 

  33. Seol E, Kim S, Raj S M, Park S. Comparison of hydrogenproduction capability of four different Enterobacteriaceae strains under growing and non-growing conditions. International Journal of Hydrogen Energy, 2008, 33(19): 5169–5175

    Article  CAS  Google Scholar 

  34. Bringi V, Dale B E. Enhanced yeast immobilization by nutrient starvation. Biotechnology Letters, 1985, 7(12): 905–908

    Article  CAS  Google Scholar 

  35. Gavala H N, Skiadas I V, Ahring B K. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. International Journal of Hydrogen Energy, 2006, 31(9): 1164–11

    Article  CAS  Google Scholar 

  36. Gil G C, Chang I S, Kim B H, Kim M, Jang J K, Park H S, Kim H J. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors & Bioelectronics, 2003, 18(4): 327–334

    Article  CAS  Google Scholar 

  37. He Z, Huang Y, Manohar A K, Mansfeld F. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry (Amsterdam, Netherlands), 2008, 74(1): 78–82

    Article  CAS  Google Scholar 

  38. Ren Z, Ward T E, Regan J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environmental Science & Technology, 2007, 41(13): 4781–4786

    Article  CAS  Google Scholar 

  39. Venkata Mohan S, Veer Raghavulu S, Sarma P N. Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosensors & Bioelectronics, 2008, 23(9): 1326–1332

    Article  CAS  Google Scholar 

  40. Menicucci J, Beyenal H, Marsili E, Veluchamy, Demir G, Lewandowski Z. Veluchamy, Demir G, Lewandowski Z. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environmental Science & Technology, 2006, 40(3): 1062–1068

    Article  CAS  Google Scholar 

  41. Yuan Y, Zhao B, Zhou S, Zhong S, Zhuang L. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresource Technology, 2011, 102(13): 6887–6891

    Article  CAS  Google Scholar 

  42. Kim B H, Chang I S, Gadd G M. Challenges in microbial fuel cell development and operation. Applied Microbiology and Biotechnology, 2007, 76(3): 485–494

    Article  CAS  Google Scholar 

  43. Kim B H, Chang I S, Gil G C, Park H S, Kim H J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 2003, 25(7): 541–545

    Article  CAS  Google Scholar 

  44. Di Lorenzo M, Curtis T P, Head I M, Scott K. A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Research, 2009, 43(13): 3145–3154

    Article  Google Scholar 

  45. Lefebvre O, Tan Z, Kharkwal S, Ng H Y. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresource Technology, 2012, 112: 336–340

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Das.

Additional information

Two authors have equal contribution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandit, S., Balachandar, G. & Das, D. Improved energy recovery from dark fermented cane molasses using microbial fuel cells. Front. Chem. Sci. Eng. 8, 43–54 (2014). https://doi.org/10.1007/s11705-014-1403-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1403-4

Keywords

Navigation