Skip to main content

Microbial Degradation for the Production of Value-Added Compounds: Biohydrogen from Dark Fermentation and Microbial Electrolysis Cells

  • Chapter
  • First Online:
Recent Advances in Microbial Degradation

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Biotechnological processes for biohydrogen production have been developed in recent years, among which dark fermentation and the use of microbial electrolysis cells are two technologies with economic feasibility for the production of organic acids and gaseous fuels such as hydrogen. One of the advantages of these technologies is the possibility of using organic waste as a substrate for the application of the bioprocess. In this chapter, the background, fundamentals and applications of both technologies are presented. Dark fermentation can produce hydrogen, CO2, and volatile fatty acids as final byproducts of the anaerobic conversion of substrates rich in carbohydrates. This process can be used as an initial step in a biorefinery for the treatment of waste and production of energy and value-added subproducts. Microbial electrolysis cells combine electrochemical cell elements such as electrodes and an external energy source with characteristics of biological reactors to produce energy in the form of electrical current, biogas and hydrogen. Hydrogen gas is formed through the combination of abiotic and biological electrochemical reactions, the latter being catalyzed by electroactive microorganisms. Microbial electrolysis cells represent a flexible technology that provides multiple routes to take advantage of residual biomass for energy production; the focus in this chapter is to describe relevant aspects that characterize this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agyeman FO, Wendong T (2004) Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate. J Environ Manag 133:268–274

    Article  CAS  Google Scholar 

  • Alibardi L, Cossu R (2016) Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag 47:69–77

    Article  CAS  PubMed  Google Scholar 

  • Allen RM, Bennetto HP (1993) Microbial fuel cells- electricity production from carbohydrates. Appl Biochem Biotechnol 39:27–40. https://doi.org/10.1007/bf02918975

    Article  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–109

    Article  CAS  PubMed  Google Scholar 

  • Anzwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sust Energ Rev 31:158–173

    Article  CAS  Google Scholar 

  • Arooj MF, Han S-K, Kim S-H, Kim D-H, Shin H-S (2008) Effect of HRT on ASBR converting starch into biological hydrogen. Int J Hydrog Energy 33(22):6509–6514

    Article  CAS  Google Scholar 

  • Badiei M, Jahim JM, Anuar N, Abdullah SR (2011) Effect of hydraulic retention time on biohydrogen production from palm oil mill effluent in anaerobic sequencing batch reactor. Int J Hydrog Energy 36(10):5912–5919

    Article  CAS  Google Scholar 

  • Balachandar G, Khanna N, Das D (2013) Biohydrogen production from organic wastes by dark fermentation. Biohydrogen:103–144

    Google Scholar 

  • Bockris JOM (1998) Modern electrochemistry, 2nd edn. Kluwer Academic Publishers, New York

    Google Scholar 

  • Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93(1):41–48. https://doi.org/10.1007/s00253-011-3653-0

    Article  CAS  PubMed  Google Scholar 

  • Bundhoo MZ, Mohee R (2016) Inhibition of dark fermentative bio-hydrogen production: a review. Int J Hydrog Energy 41:6713–6733

    Article  CAS  Google Scholar 

  • Cabrol L, Marone A, Tapia-Venegas E, Steyer J, Ruiz-Filippi G, Trably E (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev 41:158–181

    Article  CAS  PubMed  Google Scholar 

  • Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42(9):3401–3406

    Google Scholar 

  • Cardena R, Moreno-Andrade I, Buitron G (2018) Improvement of the bioelectrochemical hydrogen production from food waste fermentation effluent using a novel start-up strategy. J Chem Technol Biotechnol 93(3):878–886. https://doi.org/10.1002/jctb.5443

    Article  CAS  Google Scholar 

  • Castelló E, y Santos CG, Iglesias T, Paolino G, Wenzel J, Borzacconi L (2009) Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int J Hydrog Energy:5674–5682

    Google Scholar 

  • Castelló E, Ferraz-Junior ADN, Andreani C, Anzola-Rojas M, Borzacconi K, Buitrón G, Carrillo-Reyes J, Gomes SD, Maintinguer SI, Moreno-Andrade I, Palomo-Briones R, Razo-Flores E, Schiappacasse M, Tapia-Venegas E, Valdez-Vázquez I, Vesga-Baron A, Zaiat M, Etchebehere (2020) Stability problems in the hydrogen production by dark fermentation: possible causes and solutions. Renew Sustain Energy Rev 119:109602

    Article  CAS  Google Scholar 

  • Castillo-Hernandez A, Mar-Alvarez I, Moreno-Andrade I (2015) Start-up and operation of continuous stirred-tank reactor for biohydrogen production from restaurant organic solid waste. Int J Hydrog Energy:1–7

    Google Scholar 

  • Cercado-Quezada B, Delia ML, Bergel A (2010) Treatment of dairy wastes with a microbial anode formed from garden compost. J Appl Electrochem 40:225–232

    Google Scholar 

  • Cheng SA, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102(3):3571–3574. https://doi.org/10.1016/j.biortech.2010.10.025

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka A, Błaszczyk M, Szczęsny P, Nowak K, Sumińska M, Tomczyk-Żak K, Sikora A (2011) Comparative analysis of hydrogen-producing bacterial biofilms and granular sludge formed in continuous cultures of fermentative bacteria. Bioresour Technol 102(21):10057–10064

    Article  CAS  PubMed  Google Scholar 

  • Costa NL, Clarke TA, Philipp LA, Gescher J, Louro RO, Paquete CM (2018) Electron transfer process in microbial electrochemical technologies: the role of cell-surface exposed conductive proteins. Bioresour Technol 255:308–317. https://doi.org/10.1016/j.biortech.2018.01.133

    Article  CAS  PubMed  Google Scholar 

  • Croese E, Jeremiasse AW, Marshall IPG, Spormann AM, Euveritik GJW, Geelhoed JS et al (2014) Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells. Enzym Microb Technol 61–62:67–75. https://doi.org/10.1016/j.enzmictec.2014.04.019

    Article  CAS  Google Scholar 

  • Dantas JM, Morgado L, Aklujkar M, Bruix M, Londer YY, Schiffer M et al (2015) Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies. Front Microbiol 6:752. https://doi.org/10.3389/fmicb.2015.00752

    Article  PubMed  PubMed Central  Google Scholar 

  • De Gioannis G, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag 33(6):1345–1361

    Article  PubMed  CAS  Google Scholar 

  • Dong L, Zhenhong Y, Yongming S, Xiaoying K, Yu Z (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrog Energy 34(2):812–820

    Article  CAS  Google Scholar 

  • Donovan C, Dewan A, Heo D, Beyenal H (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ Sci Technol 42(22):8591–8596. https://doi.org/10.1021/es801763g

    Article  CAS  PubMed  Google Scholar 

  • Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53(2):468–473. https://doi.org/10.1016/j.electacta.2007.06.069

    Article  CAS  Google Scholar 

  • Favaro L, Alibardi L, Lavagnolo MC, Casella S, Basaglia M (2013) Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. Int J Hydrog Energy 38(27):774–779

    Article  CAS  Google Scholar 

  • Flayac C, Trably E, Bernet N (2018) Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: significance of microbial structures. Bioelectrochemistry 123:219–226. https://doi.org/10.1016/j.bioelechem.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  • García-Gen S, Sousbie P, Rangaraj G, Lema JM, Rodríguez J, Steyer J-P, Torrijos M (2015) Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes. Waste Manag 35:96–104

    Article  PubMed  Google Scholar 

  • Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens P, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  CAS  Google Scholar 

  • Hafez H, Nakhla G, El Naggar H (2010) An integrated system for hydrogen and methane production during landfill leachate treatment. Int J Hydrog Energy 35:5010–5014

    Article  CAS  Google Scholar 

  • Hallenbeck P, Benemann J (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11–12):1185–1193

    Article  CAS  Google Scholar 

  • Hrapovic S, Manuel MF, Luong JHT, Guiot SR, Tartakovsky B (2010) Electrodeposition of nickel particles on a gas diffusion cathode for hydrogen production in a microbial electrolysis cell. Int J Hydrog Energy 35(14):7313–7320. https://doi.org/10.1016/j.ijhydene.2010.04.146

    Article  CAS  Google Scholar 

  • Hu H, Fan Y, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int J Hydrog Energy 34(20):8535–8542. https://doi.org/10.1016/j.ijhydene.2009.08.011

    Article  CAS  Google Scholar 

  • Jafary T, Daud WRW, Ghasemi M, Kim BH, Jahim JM, Ismail M et al (2015) Biocathode in microbial electrolysis cell; present status and future prospects. Renew Sustain Energy Rev 47:23–33. https://doi.org/10.1016/j.rser.2015.03.003

    Article  CAS  Google Scholar 

  • Jafary T, Daud WRW, Ghasemi M, Abu Bakar MH, Sedighi M, Kim BH et al (2019) Clean hydrogen production in a full biological microbial electrolysis cell. Int J Hydrog Energy 44(58):30524–30531. https://doi.org/10.1016/j.ijhydene.2018.01.010

    Article  CAS  Google Scholar 

  • Jeremiasse AW, Hamelers HVM, Saakes M, Buisman CJN (2010) Ni foam cathode enables high volumetric H-2 production in a microbial electrolysis cell. Int J Hydrog Energy 35(23):12716–12723. https://doi.org/10.1016/j.ijhydene.2010.08.131

    Article  CAS  Google Scholar 

  • Jeremiasse AW, Hamelers HVM, Croese E, Buisman CJN (2012) Acetate enhances startup of a H2-producing microbial biocathode. Biotechnol Bioeng 109(3):657–664. https://doi.org/10.1002/bit.24338

    Article  CAS  PubMed  Google Scholar 

  • Jo J, Jeon C, Lee D, Park J (2007) Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. J Biotechnol 131(3):300–308

    Article  CAS  PubMed  Google Scholar 

  • Kamaraj M, Ramachandran KK, Aravind J (2020) Biohydrogen production from waste materials: benefits and challenges. Int J Environ Sci Technol 17:559–576

    Article  CAS  Google Scholar 

  • Karadag D, Puhakka J (2010) Enhancement of anaerobic hydrogen production by iron and nickel. Int J Hydrog Energy 35(16):8554–8560

    Article  CAS  Google Scholar 

  • Kim J, Nhat L, Chun Y, Kim S (2008) Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. Biotechnol Bioprocess Eng 13(4):499–504

    Article  CAS  Google Scholar 

  • Kim D-H, Kim S-H, Kim K-Y, Shin H-S (2010) Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste. Int J Hydrog Energy 35(4):1590–1594

    Article  CAS  Google Scholar 

  • Kumar A, Hsu LHH, Kavanagh P, Barriere F, Lens PNL, Lapinsonniere L et al (2017) The ins and outs of microorganism-electrode electron transfer reactions. Nat Rev Chem 1(3). https://doi.org/10.1038/s41570-017-0024

  • Laothanachareon T, Kanchanasuta S, Mhuanthong W, Phalakornkule C, Pisutpaisal N, Champreda V (2014) Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. J Environ Manag 144:143–151

    Article  CAS  Google Scholar 

  • Li XH, Liang DW, Bai YX, Fan YT, Hou HW (2014) Enhanced H-2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement. Int J Hydrog Energy 39(17):8977–8982. https://doi.org/10.1016/j.ijhydene.2014.03.065

    Article  CAS  Google Scholar 

  • Liang D, Shayegan S, Ng W, He J (2010) Development and characteristics of rapidly formed hydrogen-producing granules in an acidic anaerobic sequencing batch reactor (AnSBR). Biochem Eng J 49(1):119–125

    Article  CAS  Google Scholar 

  • Liang D, Liu Y, Peng S, Lan F, Lu S, Xiang Y (2014) Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell. Front Envir Sci Eng 8(4):624–630. https://doi.org/10.1007/s11783-013-0584-2

    Article  CAS  Google Scholar 

  • Liu H, Hu HQ (2012) Microbial electrolysis: novel biotechnology for hydrogen production from biomass. Microbial Technologies in Advanced Biofuels Production. 93–105. https://doi.org/10.1007/978-1-4614-1208-3_6

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320. https://doi.org/10.1021/es050244p

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liu D, Zeng JR, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40(11):2230–2236

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690. https://doi.org/10.1126/science.1217412

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518. https://doi.org/10.1016/j.tim.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2008) Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 6(3):225–231. https://doi.org/10.1111/j.1472-4669.2008.00148.x

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Xing DF, Xie TH, Ren NQ, Logan BE (2010) Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosens Bioelectron 25(12):2690–2695. https://doi.org/10.1016/j.bios.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  • Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22(5):634–647

    Article  PubMed  CAS  Google Scholar 

  • Marcus AK, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98(6):1171–1182. https://doi.org/10.1002/bit.21533

    Article  CAS  Google Scholar 

  • Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47(11):6023–6029. https://doi.org/10.1021/es400341b

    Article  CAS  PubMed  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105(10):3968–3973. https://doi.org/10.1073/pnas.0710525105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy 34(17):7404–7416

    Article  CAS  Google Scholar 

  • Moreno-Andrade I, Buitron G (2015) Evaluation of particle size and initial concentration of total solids on biohydrogen production from food waste. Fresenius Environ Bull 24(7):2289–2295

    CAS  Google Scholar 

  • Moreno-Andrade I, Carrillo-Reyes J, Santiago SG, Bujanos-Adame MC (2015) Biohydrogen from food waste in a discontinuous process: effect of HRT and microbial community analysis. Int J Hydrog Energy 40(48):17246–17252

    Article  CAS  Google Scholar 

  • Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol 34(11):856–865

    Article  CAS  PubMed  Google Scholar 

  • Motte J, Trably E, Hamelin J, Escudié R, Bonnafous A, Steyer J, Delgenès JP, Dumas C (2014) Total solid content drives hydrogen production through microbial selection during thermophilic fermentation. Bioresour Technol 166:610–615

    Article  CAS  PubMed  Google Scholar 

  • Nam JY, Logan BE (2012) Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells. Int J Hydrog Energy 37(24):18622–18628. https://doi.org/10.1016/j.ijhydene.2012.09.140

    Article  CAS  Google Scholar 

  • Nam JY, Tokash JC, Logan BE (2011) Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. Int J Hydrog Energy 36(17):10550–10556. https://doi.org/10.1016/j.ijhydene.2011.05.148

    Article  CAS  Google Scholar 

  • Oh S, Van Ginkel S, Logan B (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37(22):5186–5190

    Article  CAS  PubMed  Google Scholar 

  • Ostrem K (2004) Greening waste: anaerobic digestion for treating the organic fraction of municipal solid wastes. Department of Earth and Environmental Engineering, Columbia University, EUA, Nueva York

    Google Scholar 

  • Panigrahi S, Dubey BK (2019) A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew Energy 143:779–797

    Article  CAS  Google Scholar 

  • Patel S, Kumar P, Mehariya S, Purohit H, Lee J, Kalia V (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrog Energy 39(27):14663–14668

    Article  CAS  Google Scholar 

  • Paz-Mireles CL, Razo-Flores E, Trejo G, Cercado B (2019) Inhibitory effect of ethanol on the experimental electrical charge and hydrogen production in microbial electrolysis cells (MECs). J Electroanal Chem 835:106–113. https://doi.org/10.1016/j.jelechem.2019.01.028

    Article  CAS  Google Scholar 

  • Piemonte V, Di Paola L, Chakraborty S, Basile A (2014) Sequencing batch reactors (SBRs) for BioH2 production: reactor operation criteria. Int J Hydrog Energy:4863–4869

    Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716. https://doi.org/10.1038/nrmicro2422

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082. https://doi.org/10.1021/es050986i

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D et al (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1(1):9–18. https://doi.org/10.1038/ismej.2007.4

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Morales J, Tapia-Venegas E, Toledo-Alarcón J, Ruiz-Filippi G (2015) Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation. Water Sci Technol 71(9):1271–1285

    Article  PubMed  CAS  Google Scholar 

  • Ramos C, Buitrón G, Moreno-Andrade I, Chamy R (2012) Effect of the initial total solids concentration and initial pH on the bio-hydrogen production from cafeteria food waste. Int J Hydrog Energy 37(18):13288–13295

    Article  CAS  Google Scholar 

  • Ren Z, Steinberg LM, Regan JM (2008) Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 58(3):617–622. https://doi.org/10.2166/wst.2008.431

    Article  CAS  PubMed  Google Scholar 

  • Rezaei F, Richard TL, Brennan RA, Logan BE (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ Sci Technol 41(11):4053–4058. https://doi.org/10.1021/es070426e

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Sierra A, Rosales-Mendoza S, Monreal-Escalante E, Celis LB, Razo-Flores E, Cercado B (2017) Acclimation strategy using complex volatile fatty acid mixtures increases the microbial fuel cell (MFC) potential. Chemistryselect 2(22):6277–6285. https://doi.org/10.1002/slct.201701267

    Article  CAS  Google Scholar 

  • Rousseau R, Délia M-L, Bergel A (2014) A theoretical model of transient cyclic voltammetry for electroactive biofilms. Energy Environ Sci 7(3):1079–1094. https://doi.org/10.1039/c3ee42329h

    Article  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31(12):1632–1640. https://doi.org/10.1016/j.ijhydene.2005.12.006

    Article  CAS  Google Scholar 

  • Saady NM (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy 38(30):13172–13191

    Article  CAS  Google Scholar 

  • Santiago SG, Trably E, Latrille E, Buitrón G, Moreno-Andrade I (2019) The hydraulic retention time influences the abundance of Enterobacter, Clostridium and lactobacillus during the hydrogen production from food waste. Lett Appl Microbiol 69:138–147

    CAS  PubMed  Google Scholar 

  • Santiago SG, Morgan-Sagatusme JM, Monroy O, Moreno-Andrade I (2020) Biohydrogen production from organic solid waste in a sequencing batch reactor: an optimization of the hydraulic and solids retention time. Int J Hydrog Energy 45(47):25681–25688

    Article  CAS  Google Scholar 

  • Saraphirom P, Reungsang A (2011) Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). Int J Hydrog Energy 36(14):8765–8773

    Article  CAS  Google Scholar 

  • Sasaki K, Morita M, Sasaki D, Matsumoto N, Ohmura N, Igarashi Y (2012) Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry. Biochem Eng J 68:104–108. https://doi.org/10.1016/j.bej.2012.07.014

    Article  CAS  Google Scholar 

  • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629. https://doi.org/10.1039/b703627m

    Article  CAS  PubMed  Google Scholar 

  • Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8(2):513–519. https://doi.org/10.1039/c4ee03359k

    Article  Google Scholar 

  • Sharma P, Melkania U (2018) Effect of bioaugmentation on hydrogen production from organic fraction of municipal solid waste. Int J Hydrog Energy 43:7290–7298

    Article  CAS  Google Scholar 

  • Shin H-S, Youn J-H, Kim S-H (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrog Energy 29(13):1355–1363

    Article  CAS  Google Scholar 

  • Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12:463–491

    Article  CAS  Google Scholar 

  • Su LA, Jia WZ, Hou CJ, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799. https://doi.org/10.1016/j.bios.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  • Tapia-Venegas E, Ramirez-Morales J, Silva-Illanes F, Toledo-Alarcón J, Paillet F, Escudie R, Ruiz-Filippi G (2015) Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev Environ Sci Biotechnol 14(4):761–785

    Article  CAS  Google Scholar 

  • Tartakovsky B, Manuel MF, Wang H, Guiot SR (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrog Energy 34(2):672–677. https://doi.org/10.1016/j.ijhydene.2008.11.003

    Article  CAS  Google Scholar 

  • Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34(1):3–17. https://doi.org/10.1111/j.1574-6976.2009.00191.x

    Article  CAS  PubMed  Google Scholar 

  • Tosuner ZV, Taylan GG, Özmıhçi S (2019) Effects of rice husk particle size on biohydrogen production under solid state fermentation. Int J Hydrog Energy 44(34):18785–18791

    Article  CAS  Google Scholar 

  • Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sust Energ Rev 13:1000–1013

    Article  CAS  Google Scholar 

  • Valdez-Vazquez I, Ríos-Leal E, Esparza-García F, Cecchi F, Poggi-Varaldo H (2005) Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. Int J Hydrog Energy 30:1383–1391

    Article  CAS  Google Scholar 

  • Van Ginkel S, Sung S, Lay JJ (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730

    Article  CAS  PubMed  Google Scholar 

  • Varnero MM (2011) Manual de Biogás. Santiago de Chile: Proyecto CHI/00/G32 Remoción de Barreras para la Electrificación Rural con Energías Renovables

    Google Scholar 

  • Wang J, Yin Y (2019) Progress in microbiology for fermentative hydrogen production from organic wastes. Crit Rev Environ Sci Technol 49(10):825–886

    Article  CAS  Google Scholar 

  • Wang A, Ren N, Shi Y, Lee D (2008) Bioaugmented hydrogen production from microcrystalline cellulose using co-culture—Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int J Hydrog Energy 33(2):912–917

    Article  CAS  Google Scholar 

  • Wang L, Chen Y, Long F, Singh L, Trujillo S, Xiao X, Liu H (2020) Breaking the loop: tackling homoacetogenesis by chloroform to halt hydrogen production-consumption loop in single chamber microbial electrolysis cells. Chem Eng J 389:124436. https://doi.org/10.1016/j.cej.2020.124436

    Article  CAS  Google Scholar 

  • Wong YM, Wu TY, Juan JC (2014) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sust Energ Rev 34:471–482

    Article  CAS  Google Scholar 

  • Wu Y, Ma H, Zheng M, Wang K (2015) Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresour Technol 191:53–58

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wang W, He Y, Zhang R, Liu G (2018) Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions. Renew Energy 125:915–925

    Article  CAS  Google Scholar 

  • Zeng K, Zhang DK (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326. https://doi.org/10.1016/j.pecs.2009.11.002

    Article  CAS  Google Scholar 

  • Ziara R, Miller D, Subbiah J, Dvorak B (2019) Lactate wastewater dark fermentation: the effect of temperature and initial pH on biohydrogen production and microbial community. Int J Hydrog Energy 44:661–673

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibiana Cercado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno-Andrade, I., Cercado, B. (2021). Microbial Degradation for the Production of Value-Added Compounds: Biohydrogen from Dark Fermentation and Microbial Electrolysis Cells. In: Inamuddin, .., Ahamed, M.I., Prasad, R. (eds) Recent Advances in Microbial Degradation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0518-5_8

Download citation

Publish with us

Policies and ethics