Skip to main content

Microbial Fuel Cells for Sustainable Bioenergy Generation: Principles and Perspective Applications

  • Chapter
  • First Online:
Biofuel Technologies

Abstract

The energy gain in microbes is driven by oxidizing an electron donor and reducing an electron acceptor. Variation in the electron acceptor conditions creates a feasibility to harness energy. In order to support the microbial respiration, electrons will transfer to the exocellular medium toward the available electron acceptor, especially in the absence of oxygen. The microbes can use a wide range of electron acceptors such as metals, nutrients, minerals, etc., including solid electrodes. When the microbes use the solid electrode as electron acceptors, the setup is called microbial fuel cell (MFC) and the electrons can be harvested and used for different applications. MFC can be defined as a microbially catalyzed electrochemical system which can facilitate the direct conversion of substrate to electricity through a cascade of redox reactions, especially in the absence of oxygen. Linking the microbial metabolism to anode and then transmitting the electrons to cathode generates a net electrical power from the degradation of available electron donor. This concept of MFC operation has expanded considerable interest in the recent research due to its application in the energy recovery from wastewater. Microbes in MFC can also use variety of organic or inorganic electron donors as well as acceptors to produce a surfeit of desirable biofuels or biochemicals which is termed as microbial electrosynthesis. Apart from the electrogensis, the applications of MFC are widespread in different fields including waste/wastewater remediation, toxic pollutants/xenobiotics removal, recovery of commercially viable products, sequestration of CO2, harvesting the energy stored in marine sediments, desalination, etc. In this chapter, an attempt was made to bring out all the existing applications of MFC into one platform to make a comprehensive understanding on the inherent potential of microbial metabolism, when the designated electron acceptor is present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aelterman P (2009) Microbial fuel cells for the treatment of waste streams with energy recovery. Ph.D. Thesis, Gent University, Belgium

    Google Scholar 

  • Antonopoulou A, Stamatelatou K, Bebelis S, Lyberatos G (2009) Using cheese whey as a source of energy in a microbial fuel cell. In: Proceedings of 11th international conference on Environ Sci Technol

    Google Scholar 

  • Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554–2559

    PubMed  CAS  Google Scholar 

  • Babu ML, Venkata Mohan S (2012) Influence of graphite flake addition to sediment on electrogenesis in a sediment-type fuel cell. Biores Technol 110:206–213

    Google Scholar 

  • Behera M, Jana PS, Ghangrekar MM (2010) Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioreso Techno 101:1183–1189

    Google Scholar 

  • Bennetto HP (1990) Electricity generation by microorganisms. Biotechnol Adv 1:163–168

    CAS  Google Scholar 

  • Bennetto HP, Stirling JL, Tanaka K, Vega CA (1983) Anodic reactions in microbial fuel cells. Biotechnol Bioeng 25:559–568

    PubMed  CAS  Google Scholar 

  • Biffinger JC, Byrd JN, Dudley BL, Ringeisen BR (2008) Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron 23:820–826

    PubMed  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity generation by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    PubMed  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms harvesting energy from marine sediments. Science 295:483–485

    PubMed  CAS  Google Scholar 

  • Butler CS, Clauwaert P, Green SJ, Verstraete W, Nerenberg R (2010) Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol 44:4685–4691

    PubMed  CAS  Google Scholar 

  • Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406

    PubMed  CAS  Google Scholar 

  • Call DF, Wagner RC, Logan BE (2009) Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell. Appl Environ Microbiol 75:7579–7587

    PubMed  CAS  Google Scholar 

  • Catal T, Xu S, Li K, Bermek H, Liu H (2008) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron 24:855–860

    PubMed  Google Scholar 

  • Catal T, Bermek H, Liu H (2009) Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett 31:1211–1216

    PubMed  CAS  Google Scholar 

  • Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Biores Technol 100:3518–3525

    CAS  Google Scholar 

  • Chandra R, Venkata Mohan S (2011) Microalgal community and their growth conditions influence biohydrogen production during integration of dark-fermentation and photo-fermentation processes. Int J Hydrogen Energy 36:12211–12219

    CAS  Google Scholar 

  • Chandra R, Subhash GV, Venkata Mohan S (2012) Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity. Biores Technol 109:46–56

    CAS  Google Scholar 

  • Chandrasekhar K, Venkata Mohan S (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration. Biores Technol 110:517–525

    CAS  Google Scholar 

  • Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    PubMed  CAS  Google Scholar 

  • Chang S, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16:163–177

    CAS  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    PubMed  CAS  Google Scholar 

  • Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 104:18871–18873

    PubMed  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    PubMed  CAS  Google Scholar 

  • Cheng S, Xing D, Logan BE (2010) Electricity generation of single-chamber microbial fuel cells at low temperature. Biosens Bioelectron 26:1913–1917

    Google Scholar 

  • Cho YK, Donohue TJ, Tejedor I, Anderson MA, McMahon KD, Noguera DR (2008) Development of a solar-powered microbial fuel cell. J Appl Microbiol 104:640–650

    PubMed  CAS  Google Scholar 

  • Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    PubMed  CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, DeSchamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    CAS  Google Scholar 

  • Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrogen Energy 35:8855–8861

    CAS  Google Scholar 

  • Cusick R, Call DF, Selembo PA, Regan JM, Logan BE (2011) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters biores. Technol 102:388–394

    Google Scholar 

  • Di Lorenzo M, Curtis TP, Head IM, Scott K (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43:3145–3154

    PubMed  Google Scholar 

  • Dictor MC, Joulian C, Touze S, Ignatiadis I (2010) Electro-stimulated biological production of hydrogen from municipal solid waste Dominique guyonnet. Int J Hydrogen Energy 35:10682–10692

    Google Scholar 

  • Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor. Int J Hydrogen Energy 32:2296–2304

    CAS  Google Scholar 

  • Dumas C, Mollica A, F’eron D, Basseguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53:468–473

    CAS  Google Scholar 

  • Dutta PK, Keller J, Yuan Z, Rozendal RA, Rabaey K (2009) Role of sulfur during acetate oxidation in biological anodes. Environ Sci Technol 43:3839–3845

    PubMed  CAS  Google Scholar 

  • Escapa A, Manuel MF, Moran A, Gomez X, Guiot SR, Tartakovsky B (2009) Hydrogen production from glycerol in a membraneless microbial electrolysis cell. Energy Fuels 23:4612–4618

    CAS  Google Scholar 

  • Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919

    CAS  Google Scholar 

  • Galvez A, Greenman J, Ieropoulos I (2009) Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Biores Technol 100:5085–5091

    CAS  Google Scholar 

  • Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim J (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    PubMed  CAS  Google Scholar 

  • Goud RK, Venkata Mohan S (2011) Pre-fermentation of waste as a strategy to enhance the performance of single chambered microbial fuel cell (MFC). Int J Hydrogen Energy 36:13753–13762

    Google Scholar 

  • Goud RK, Babu PS, Venkata Mohan S (2011) Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bio-electrochemical evaluation under increasing substrate loading condition. Int J Hydrogen Energy 36:6210–6218

    CAS  Google Scholar 

  • Greenman J, Gálvez A, Giusti L, Ieropoulos I (2009) Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enz Microbiol Technol 44:112–119

    CAS  Google Scholar 

  • Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604

    CAS  Google Scholar 

  • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanal 18:2009–2015

    CAS  Google Scholar 

  • Heilmann J, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78:531–537

    PubMed  CAS  Google Scholar 

  • Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58:1562–1571

    PubMed  CAS  Google Scholar 

  • Holmes DE, Nicoll JS, Bond DR (2004) Potential role of a novel psychrotolerant member of the family geobacteraceae, geopsychrobacter electrodiphilus gene.nov., sp.nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030

    PubMed  CAS  Google Scholar 

  • Hongo M, Iwahara M (1979) Determination of electroenergizing conditions for l-glutamic acid fermentation. Agric Biol Chem 43:2083–2086

    CAS  Google Scholar 

  • Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178

    PubMed  CAS  Google Scholar 

  • Huang L, Logan BE (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80:349–355

    PubMed  CAS  Google Scholar 

  • Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Biores Technol 100:717–723

    Google Scholar 

  • Jeremiasse AW, Hubertus V, Cees H, Buisman JN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43

    PubMed  CAS  Google Scholar 

  • Jiang H, Luo S, Shi X, Dai M, Guo R (2012) A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation Biotechnol Lett

    Google Scholar 

  • Kaku N, Yonezawa N, Kodama Y, Watanable K (2008) Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol 79:43–49

    PubMed  CAS  Google Scholar 

  • Kim BH, Gadd GM (2008) Bacterial physiology and metabolism. Cambridge university press

    Google Scholar 

  • Kim TS, Kim BH (1988) Electron flow shift in clostridium acetobutylicum by electrochemically introduced reducing equivalent. Biotechnol Lett 10:123–128

    CAS  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Google Scholar 

  • Kim N, Choi Y, Jung S, Kim S (2000) Effect of initial carbon sources on the performance of microbial fuel cells containing proteus vulgaris. Biotechnol Bioeng 70:109–114

    PubMed  CAS  Google Scholar 

  • Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Biores Technol 98:2568–2577

    CAS  Google Scholar 

  • Kiran Kumar A, Reddy MV, Chandrasekhar K, Srikanth S, Venkata Mohan S (2012) Endocrine disruptive estrogens role in electron transfer: bio-electrochemical remediation with microbial mediated electrogenesis. Biores Technol 104:547–556

    CAS  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    CAS  Google Scholar 

  • Lalaurette E, Thammannagowda S, Mohagheghi A, Maness PC, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrogen Energy 34:6201–6210

    CAS  Google Scholar 

  • Larminie J, Dicks A (2000) In: Fuel cell systems explained, Wiley, Chichester, p 308

    Google Scholar 

  • Lee HS, Rittmann BE (2010) Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. Environ Sci Technol 44:948–954

    PubMed  CAS  Google Scholar 

  • Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittman BE (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501–1510

    PubMed  CAS  Google Scholar 

  • Lee HS, Torres C, Rittmann BE (2009) Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria. Environ Sci Technol 43:7571–7577

    PubMed  CAS  Google Scholar 

  • Lefebvre O, Mamun A, Ng HY (2008) A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 58:881–885

    PubMed  CAS  Google Scholar 

  • Liu H, Cheng SA, Logan BE (2005a) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    PubMed  CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005b) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    PubMed  CAS  Google Scholar 

  • Logan BE (2008) Microbial fuel cells, Wiley Inc, Hoboken

    Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical Systems. Appl Microbiol Biotechnol 85:1665–1671

    PubMed  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    PubMed  CAS  Google Scholar 

  • Logan BE, Liu H, Grot S, Mallouk TA (2005) Bioelectrochemically assisted microbial reactor (BEAMR) that generates hydrogen gas. U.S. Utility Patent Application, vol 11(180), p 454

    Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:516–528

    Google Scholar 

  • Logan BE, Rozendal RA, Hamelers HVM, Call D, Chen S, Sleutels THJA, Jeremiasse AW (2008) Microbial electrolysis cells (MECs) for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    PubMed  CAS  Google Scholar 

  • Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Cur Opin Biotechnol 17:327–332

    CAS  Google Scholar 

  • Lowy DA, Tender LM, Zeikus J, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment–water interface II: kinetic activity of anode materials. Biosens Bioelectron 21:2058–2063

    PubMed  CAS  Google Scholar 

  • Lu L, Xing D, Xie T, Ren N, Logan BE (2010) Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosens Bioelectron 25:2690–2695

    PubMed  CAS  Google Scholar 

  • Luo Y, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147:259–264

    CAS  Google Scholar 

  • Luo Y, Liu G, Zhang R, Zhang C (2010) Power generation from furfural using the microbial fuel cell. J Power Sources 195:190–194

    CAS  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973

    PubMed  CAS  Google Scholar 

  • Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814

    PubMed  CAS  Google Scholar 

  • Min B, Kim JR, Oh SE, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    PubMed  CAS  Google Scholar 

  • Mohanakrishna G, Venkata Mohan S, Sarma PN (2010a) Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. J Hazard Mater 177:487–494

    PubMed  CAS  Google Scholar 

  • Mohanakrishna G, Venkata Mohan S, Sarma PN (2010b) Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrogen Energy 35:3440–3449

    CAS  Google Scholar 

  • Mohanakrishna G, Krishna Mohan S, Venkata Mohan S (2012) Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: Evaluation with real field wastewater. Appl Energy 95:31–37

    CAS  Google Scholar 

  • Mu Y, Rabaey K, Rene A, Zhiguo R, Yuan Z, Keller J (2009a) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43:5137–5143

    PubMed  CAS  Google Scholar 

  • Mu Y, Rozendal RA, Rabaey K, Yuan Z, Keller J (2009b) Nitrobenzene removal in bioelectrochemical systems environ. Sci Technol 43:8690–8695

    CAS  Google Scholar 

  • Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 4th edn. WH Freeman, New York

    Google Scholar 

  • Newman DK (2001) How bacteria respire minerals. Science 292:1312–1313

    PubMed  CAS  Google Scholar 

  • Newman DK, Kolter RA (2000) A role of excreted quinones in extracellular electron transport. Nature 405:94–97

    PubMed  CAS  Google Scholar 

  • Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28:871–881

    PubMed  CAS  Google Scholar 

  • Pandit S, Ghosh S, Ghangrekar MM, Das D (2012). Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. Int J of Hydrogen Energy 37:9383–9392

    Google Scholar 

  • Pant D, Singh A, Satyawali Y, Gupta RK (2008) Effect of carbon and nitrogen source amendment on synthetic dyes decolourizing efficiency of white-rot fungus, phanerochaete chrysosporium. J Environ Biol 29:79–84

    PubMed  CAS  Google Scholar 

  • Park DH, Zeikus JG (1999) Utilization of electrically reduced neutral red by actinobacillus succinogenes: physiological function of neutral red in membranedriven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410

    PubMed  CAS  Google Scholar 

  • Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292–1297

    PubMed  CAS  Google Scholar 

  • Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917

    PubMed  CAS  Google Scholar 

  • Patil SA, Surakasi VP, Koul S, Ljmulwar S, Vivek A, Shouche YS, Kapadnis BP (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Biores Technol 100:5132–5139

    CAS  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    PubMed  CAS  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535

    PubMed  CAS  Google Scholar 

  • Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2004) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cell. ISME J 2:519–527

    Google Scholar 

  • Rabaey K, Lissens G, Verstraete W (2005) Microbial fuel cells: performances and perspectives. In: Lens P, Westermann P, Haberbauer M, Moreno A (eds) Biofuels for fuel cells: renewable energy from biomass fermentation, pp 375–396

    Google Scholar 

  • Rabaey K, VandeSompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, DeSchamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40:5218–5224

    PubMed  CAS  Google Scholar 

  • Rader GK, Logan BE (2010) Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrogen Energy 35:8848–8854

    CAS  Google Scholar 

  • Raghavulu SV, Sarma PN, Venkata Mohan S (2011a) Comparative bio-electrochemical analysis of pseudomonas aeruginosa and escherichia coli with anaerobic consortia as anodic biocatalyst for biofuel cell application. J Appl Microbiol 110:666–674

    PubMed  CAS  Google Scholar 

  • Raghavulu SV, Goud RK, Sarma PN, Venkata Mohan S (2011b) Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Biores Technol 102:2751–2757

    CAS  Google Scholar 

  • Raghavulu SV, Babu PS, Goud RK, Subhash GV, Srikanth S, Venkata Mohan S (2012) Bioaugmentation of electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis. RSC Advances 2:677–688

    CAS  Google Scholar 

  • Raghuvulu SV, Venkata Mohan S, Goud RK, Sarma PN (2009a) Anodic pH microenvironment influence on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem Commun 11:371–375

    Google Scholar 

  • Raghuvulu SV, Venkata Mohan S, Reddy MV, Mohanakrishna G, Sarma PN (2009b) Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int J Hydrogen Energy 34:7547–7554

    Google Scholar 

  • Reddy MV, Venkata Mohan S (2012) Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Biores Technol 103:313–321

    Google Scholar 

  • Reddy MV, Srikanth S, Venkata Mohan S, Sarma PN (2010) Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions. Bioelectrochemistry 77:125–132

    PubMed  CAS  Google Scholar 

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195

    PubMed  CAS  Google Scholar 

  • Reimers C, Girguis P, Westall J, Newman D, Stecher H, Howell K, Alleau Y (2005) Using electrochemical methods to study redox processes and harvest energy from marine sediments. In: Goldschmidt conference abstracts. Oxidation–reduction reactions in marine sediments

    Google Scholar 

  • Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781–4786

    PubMed  CAS  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005) A microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    PubMed  CAS  Google Scholar 

  • Ringeisen BR, Ray R, Little B (2007) A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources 165:591–597

    CAS  Google Scholar 

  • Rodrigo MA, Canizares P, Lobato J, Paz R, Saez C, Linares JJ (2007) Production of electricity from the treatment of urban waste water using a microbial fuel cell. J Power Sources 169:198–204

    CAS  Google Scholar 

  • Roller SD, Bennetto HP, Delaney GM, Mason JR, Stirling JL, Thurston CF (1984) Electron—transfer coupling in microbial fuel cells: 1 Comparision of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol 34:3–12

    CAS  Google Scholar 

  • Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Biores Technol 102:324–333

    CAS  Google Scholar 

  • Rozendal RA, Hamelers HVV, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    PubMed  CAS  Google Scholar 

  • Ryckelynck N, Stecher HA III, Reimers CE (2005) Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochemistry 76:113–139

    Google Scholar 

  • Saravanan R, Arun A, Venkata Mohan S, Jegadeesan Kandavelu T, Veeramanikandan (2010) Membraneless dairy wastewater-sediment interface for bioelectricity generation employing sediment microbial fuel cell (SMFC). Afr J Microbiol Res 4:2640–2646

    CAS  Google Scholar 

  • Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem 9:2619–2629

    Google Scholar 

  • Selembo PA, Merrill MD, Logan BE (2009) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources 190:271–278

    CAS  Google Scholar 

  • Shantaram A, Beyenal H, Veluchamy RRA, Lewandowski Z (2005) Wireless sensors powered by microbial fuel cell. Environ Sci Technol 39:5037–5042

    PubMed  CAS  Google Scholar 

  • Sharma Y, Baikun LB (2010) The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Biores Technol 101:1844–1850

    CAS  Google Scholar 

  • Spanjers H, van Lier JB (2006) Instrumentation in anaerobic treatment—research and practice. Water Sci Technol 53:63–76

    PubMed  CAS  Google Scholar 

  • Srikanth S, Venkata Mohan S (2012a) Change in electrogenic activity of the microbial fuel cell (MFC) with the function of biocathode microenvironment as terminal electron accepting condition: influence on overpotentials and bio-electro kinetics. Biores Technol.

    Google Scholar 

  • Srikanth S, Venkateswar Reddy M, Venkata Mohan S (2012b). Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES). Biores Technol 125:291–299

    Google Scholar 

  • Srikanth S, Venkata Mohan S, Devi MP, Babu ML, Sarma PN (2009) Effluents with soluble metabolites generated from acidogenic to methanogenic processes as substrate for additional hydrogen production through photo-biological process. Int J Hydrogen Energy 34:1771–1779

    CAS  Google Scholar 

  • Srikanth S, Venkata Mohan S, Sarma PN (2010a) Positive anodic poised potential regulates microbial fuel cell performance with the function of open and closed circuitry. Biores Technol 101:5337–5344

    CAS  Google Scholar 

  • Srikanth S, Venkata Mohan S, Lalit Babu V, Sarma PN (2010b) Metabolic shift and electron discharge pattern of anaerobic consortia as a function of pretreatment method applied during fermentative hydrogen production. Int J Hydrogen Energy 35:10693–10700

    CAS  Google Scholar 

  • Srikanth S, Pavani T, Sarma PN, Venkata Mohan S (2011) Synergistic interaction of biocatalyst with bio-anode as a function of electrode materials. Int J Hydrogen Energy 36:2271–2280

    CAS  Google Scholar 

  • Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513–517

    PubMed  CAS  Google Scholar 

  • Strik DPBTB, Terlouw H, Hubertus VM, Buisman HCJN (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668

    PubMed  CAS  Google Scholar 

  • Sun M, Sheng GP, Zhang L, Xia CR, Mu ZX, Liu XW, Wang HL, Yu HQ, Qi R, Yu T, Yang M (2008) An MEC-MFC-coupled system for biohydrogen production from acetate. Environ Sci Technol 42:8095–8100

    PubMed  CAS  Google Scholar 

  • Sun M, Sheng GP, Mu ZX, Liu XW, Chen YZ, Wang HL, Yu HQ (2009) Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system. J Power Sources 191:338–343

    CAS  Google Scholar 

  • Tartakovsky B, Manuel MF, Wang H, Guiot SR (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrogen Energy 34:672–677

    CAS  Google Scholar 

  • Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825

    PubMed  CAS  Google Scholar 

  • Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746

    PubMed  CAS  Google Scholar 

  • Velvizhi G, Venkata Mohan S (2011) Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: evaluation with pharmaceutical wastewater for multi-pollutant removal. Biores Technol 102:10784–10793

    CAS  Google Scholar 

  • Velvizhi G, Venkata Mohan S (2012) Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater. Int J Hydrogen Energy 37:5969–5978

    CAS  Google Scholar 

  • Velvizhi G, Babu PS, Mohanakrishna G, Srikanth S, Venkata Mohan S (2012) Evaluation of voltage sag-regain phases to understand the stability of bioelectrochemical system: electro-kinetic analysis. RSC Advances 2:1379–1386

    CAS  Google Scholar 

  • Venkata Mohan S (2008) Fermentative hydrogen production with simultaneous wastewater treatment: influence of pretreatment and system operating conditions. J Sci Ind Res 67:950–961

    Google Scholar 

  • Venkata Mohan S (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrogen Energy 34:7460–7474

    CAS  Google Scholar 

  • Venkata Mohan S (2010) Waste to renewable energy: a sustainable and green approach towards production of biohydrogen by acidogenic fermentation. In: Singh Om V, Harvey Steven P (eds) Sustainable biotechnology: sources of renewable energy, Springer, Netherlands (ISBN: 978-90-481-3294-2), p 129–164

    Google Scholar 

  • Venkata Mohan S, Babu ML (2011) Dehydrogenase activity in association with poised potential during biohydrogen production in single chamber microbial electrolysis cell. Biores Technol 102:8457–8465

    CAS  Google Scholar 

  • Venkata Mohan S, Chandrasekhar K (2011a) Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: Influence of electrode assembly and buffering capacity. Biores Technol 102:7077–7085

    Google Scholar 

  • Venkata Mohan S, Chandrasekhar K (2011b) Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Biores Technol 102:9532–9541

    Google Scholar 

  • Venkata Mohan S, Goud RK (2012) Pretreatment of biocatalyst as viable option for sustained production of biohydrogen from wastewater treatment, in biogas production. In: Mudhoo A (ed) Pretreatment methods in anaerobic digestion, Wiley, Inc., Hoboken 11:291–311

    Google Scholar 

  • Venkata Mohan S, Srikanth S (2011) Enhanced wastewater treatment efficiency through microbial catalyzed oxidation and reduction: Synergistic effect of biocathode microenvironment. Biores Technol 102:10210–10220

    CAS  Google Scholar 

  • Venkata Mohan S, Veer Raghuvulu S, Srikanth S, Sarma PN (2007a) Bioelectricity production by meditorless microbial fuel cell (MFC) under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr Sci 92:1720–1726

    Google Scholar 

  • Venkata Mohan S, Bhaskar YV, Sarma PN (2007b) Biohydrogen production from chemical wastewater treatment by selectively enriched anaerobic mixed consortia in biofilm configured reactor operated in periodic discontinuous batch mode. Water Res 41:2652–2664

    PubMed  CAS  Google Scholar 

  • Venkata Mohan S, Veer Raghuvulu S, Sarma PN (2008a) Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosens Bioelectron 23:1326–1332

    PubMed  CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Srikanth S, Sarma PN (2008b) Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia. Fuel 87:2667–2676

    Google Scholar 

  • Venkata Mohan S, Saravanan R, Veer Raghuvulu S, Mohankrishna G, Sarma PN (2008c) Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Biores Technol 99:596–603

    CAS  Google Scholar 

  • Venkata Mohan S, Veer Raghuvulu S, Sarma PN (2008d) Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosens Bioelectron 24:41–47

    PubMed  CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Reddy BP, Sarvanan R, Sarma PN (2008e) Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J 39:121–130

    CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Sarma PN (2008f) Effect of anodic metabolic function on bioelectricity generation and substrate degradation in single chambered microbial fuel cell. Environ Sci Technol 42:8088–8094

    PubMed  CAS  Google Scholar 

  • Venkata Mohan S, Lalit Babu V, Sarma PN (2008g) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Biores Technol 99:59–67

    CAS  Google Scholar 

  • Venkata Mohan S, Mohankrishna G, Sarma PN (2008h) Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment. Int J Hydrogen Energy 33:2156–2166

    Google Scholar 

  • Venkata Mohan S, Veer Raghuvulu S, Dinakar P, Sarma PN (2009a) Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosen Bioelect 24:2021–2027

    Google Scholar 

  • Venkata Mohan S, Srikanth S, Sarma PN (2009b) Non-catalyzed microbial fuel cell (MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment. Bioelectrochemistry 75:130–135

    PubMed  Google Scholar 

  • Venkata Mohan S, Srikanth S, Veer Raghuvulu S, Mohanakrishna G, Kiran Kumar A, Sarma PN (2009c) Evaluation of the potential of various aquatic eco-systems in harnessing bioelectricity through benthic fuel cell: effect of electrode assembly and water characteristics. Biores Technol 100:2240–2246

    CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Velvizhi G, Lalit Babu V, Sarma PN (2010a) Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 51:32–39

    CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Sarma PN (2010b) Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Biores Technol 101:970–976

    CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Srikanth S (2011a) Biohydrogen Production from Industrial Effluents (Chapter 22). In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels: alternative feedstocks and conversion processes, Academic Press, Elsevier, Burlington, pp 499–524 (ISBN: 978-0-12-385099-7)

    Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Chiranjeevi P (2011b) Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Biores Technol 102:7036–7042

    CAS  Google Scholar 

  • Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024

    PubMed  CAS  Google Scholar 

  • Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen production from swine wastewater. Water Res 43:1480–1488

    PubMed  CAS  Google Scholar 

  • Wang X, Cheng S, Feng Y, Merrill MD, Saito T, Logan BE (2009) The use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43:6870–6874

    PubMed  CAS  Google Scholar 

  • Yazdi RH, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97:1398–1407

    Google Scholar 

  • You S, Zhao Q, Zhang J, Jiang J, Zhao S (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415

    CAS  Google Scholar 

  • Zhang JN, Zhao QL, You SJ, Jiang JQ, Ren NQ (2008) Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Sci Technol 57:1017–1021

    PubMed  CAS  Google Scholar 

  • Zhang Y, Min B, Huang L, Angelidaki I (2009a) Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl Environ Microbiol 75:3389–3395

    PubMed  CAS  Google Scholar 

  • Zhang C, Li M, Liu G, Luo H, Zhang R (2009b) Pyridine degradation in the microbial fuel cell. J Hazard Mater 172:465–471

    PubMed  CAS  Google Scholar 

  • Zhu X, Ni J (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem comm 11:274–277

    Google Scholar 

  • Zuo Y, Xing D, Regan JM, Logan BE (2008) Isolation of the exoelectrogenic bacterium ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74:3130–3137

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Author thanks Director, CSIR-IICT for his encouragement. Funding from CSIR in the form of XII five year network project on `Sustainable Waste Management Technologies for Chemical and Allied Industries (SETCA)' is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venkata Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Venkata Mohan, S., Srikanth, S., Velvizhi, G., Lenin Babu, M. (2013). Microbial Fuel Cells for Sustainable Bioenergy Generation: Principles and Perspective Applications. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_14

Download citation

Publish with us

Policies and ethics