Skip to main content
Log in

Study on the drying kinetics and quality parameters of osmotic pre-treated dried Satkara (Citrus macroptera) fruits

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Thin layer drying of the Citrus macroptera samples pretreated with 2% NaCl, 10% sucrose, and 10% glucose solution was accomplished in a humidity chamber to evaluate the effects of drying temperatures (45, 50, and 55 °C) on drying kinetics and check the relative biochemical properties, and the microbial load. The drying data were fitted using the moisture ratio (MR) to predict the drying kinetics. The fitness was measured for the Newton, Henderson and Pabis, and Page model. The changes in water loss were fitted to Peleg model and Weibull distribution model to predict the water loss distribution during drying. Page’s mathematical model was selected as the best-fitted model for explaining drying kinetics based on the highest R2 and the lowest Root Mean Square Error (RMSE) values. The Peleg’s model was found to fit well for equilibrium moisture content at different temperatures. Drying of the Satkara samples at 45 °C showed better results in the retention of color, total flavonoid content, total phenolic content (TPC), vitamin C, citric acid, vitamin B1, and B6 at different pre-treatment conditions. Antioxidant activity was significantly higher (p < 0.05) in the dried Satkara slices dried at 55 °C. Among the B-vitamins, vitamin B3 was comparatively stable during the drying process. Sucrose pre-treated samples showed better results in the retention of color, TPC, citric acid, ascorbic acid, and antioxidant activity. The microbial load (bacterial load: 3.4 × 103 to 1.5 × 103 CFU/g and fungal load < 104 CFU/g) was at an acceptable level in all the dried samples. According to the findings, drying of the Satkara at 55 °C pretreated with 10% sucrose was comparatively better while considering the minimum time required for drying and considerable loss of nutritional factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Paul, S. Das, E. Tanvir, M.S. Hossen, M. Saha, R. Afroz, M.A. Islam, M.S. Hossain, S.H. Gan, M.I. Khalil, Biomed. Pharmacother. 94, 256–264 (2017). https://doi.org/10.1016/j.biopha.2017.07.080

    Article  CAS  PubMed  Google Scholar 

  2. M. Majumdar, S.A. Khan, S.C. Biswas, D.N. Roy, A.S. Panja, T.K. Misra, J. Mol. Liq. 302, 112586 (2020). https://doi.org/10.1016/j.molliq.2020.112586

    Article  CAS  Google Scholar 

  3. M.M. Hasan, M.S. Islam, K.M.F. Hoque, A. Haque, M.A. Reza, Toxicol. Res. 35, 271–277 (2019). https://doi.org/10.5487/TR.2019.35.3.271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N. Uddin, M.R. Hasan, M.M. Hasan, M.M. Hossain, M.R. Alam, M.R. Hasan, A.M. Islam, T. Rahman, M.S. Rana, PLoS ONE 9, e111101 (2014). https://doi.org/10.1371/journal.pone.0111101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. W. Zzaman, R. Biswas, M.A. Hossain, Heliyon 7, e05882 (2021). https://doi.org/10.1016/j.heliyon.2020.e05882

    Article  PubMed  PubMed Central  Google Scholar 

  6. M.A. Hossain, S. Mitra, M. Belal, W. Zzaman, Food Res. (2021). https://doi.org/10.26656/fr.2017.5(1).372

    Article  Google Scholar 

  7. C. Ratti, A. Mujumdar, Sol. Energy 60, 151–157 (1997). https://doi.org/10.1016/S0038-092X(97)00002-9

    Article  Google Scholar 

  8. S.P. Ong, C.L. Law, Drying Technol. 29, 429–441 (2011). https://doi.org/10.1080/07373937.2010.503332

    Article  CAS  Google Scholar 

  9. L.A. Ramallo, R.H. Mascheroni, Food Bioprod. Process. 90, 275–283 (2012). https://doi.org/10.1016/j.fbp.2011.06.001

    Article  CAS  Google Scholar 

  10. Ó. Rodríguez, W. Gomes, S. Rodrigues, F.A. Fernandes, Ultrason. Sonochem. 35, 92–102 (2017). https://doi.org/10.1016/j.ultsonch.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  11. A. Rózek, J.V. García-Pérez, F. López, C. Güell, M. Ferrando, J. Food Eng. 99, 142–150 (2010). https://doi.org/10.1016/j.jfoodeng.2010.02.011

    Article  CAS  Google Scholar 

  12. J.H. Shourove, W. Zzaman, R.S. Chowdhury, M.M. Hoque, Asian Food Sci J. 14, 41–53 (2020). https://doi.org/10.9734/afsj/2020/v14i330133

    Article  Google Scholar 

  13. A. Fijalkowska, M. Nowacka, A. Wiktor et al., J. Food Process Eng 39, 256–265 (2016). https://doi.org/10.1111/jfpe.12217

    Article  Google Scholar 

  14. M.A. Hossain, P. Dey, R.I. Joy, Saudi J. Biol. Sci. (2021). https://doi.org/10.1016/j.sjbs.2021.08.038

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. Sarkar, S. Rahman, M. Roy, M. Alam, M.A. Hossain, T. Ahmed, Food Res. 5, 393–400 (2021). https://doi.org/10.26656/fr.2017.5(2).556

    Article  Google Scholar 

  16. N. Izli, G. Izli, O. Taskin, Food Meas. Charact. 11, 64–74 (2017). https://doi.org/10.1007/s11694-016-9372-6

    Article  Google Scholar 

  17. B. Önal, G. Adiletta, A. Crescitelli, M. Di Matteo, P. Russo, Food Bioprod. Process. 115, 87–99 (2019). https://doi.org/10.1016/j.fbp.2019.03.002

    Article  CAS  Google Scholar 

  18. R. Goyal, A. Kingsly, M. Manikantan, S. Ilyas, Biosyst. Eng. 95, 43–49 (2006). https://doi.org/10.1016/j.biosystemseng.2006.05.001

    Article  Google Scholar 

  19. S.M. Oliveira, T.R. Brandao, C.L. Silva, Food Eng. Rev. 8, 134–163 (2016). https://doi.org/10.1007/s12393-015-9124-0

    Article  CAS  Google Scholar 

  20. G. Adiletta, C. Warshamana Dewayalage, W. Senadeera, P. Russo, A. Crescitelli, Ital. J. Food Sci. 30, 684–706 (2018). https://doi.org/10.14674/IJFS-1176

    Article  CAS  Google Scholar 

  21. I. Doymaz, O. Ismail, Food Bioprod. Process. 89, 31–38 (2011). https://doi.org/10.1016/j.fbp.2010.03.006

    Article  Google Scholar 

  22. M. Sharma, K.K. Dash, Ultrasonics Sonochem. 58, 104693 (2019). https://doi.org/10.1016/j.ultsonch.2019.104693

    Article  CAS  Google Scholar 

  23. A.N. Yüksel, M.D. Oner, M. Bayram, M.E. Oner, J. Food Meas. Charact. 12, 1723–1733 (2018). https://doi.org/10.1016/j.ultsonch.2019.104693

    Article  CAS  Google Scholar 

  24. M.H. Nadian, S. Rafiee, M.R. Golzarian, J. Food Meas. Charact. 10, 493–506 (2016). https://doi.org/10.1007/s11694-016-9328-x

    Article  Google Scholar 

  25. M.A. Hossain, M. Evan, M. Moazzem, M. Roy, W. Zzaman, J. Sci. Res. 12, 397–409 (2020). https://doi.org/10.3329/jsr.v12i3.44459

    Article  CAS  Google Scholar 

  26. M.A. Hossain, M.S. Hossain, Biomass Convers. Biorefin. (2021). https://doi.org/10.1007/s13399-021-01761-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. S. Saikia, N.K. Mahnot, C.L. Mahanta, Food Sci. Technol. Int. 22, 288–301 (2016)

    Article  Google Scholar 

  28. A. Del Caro, A. Piga, I. Pinna, P.M. Fenu, M. Agabbio, J. Agric. Food Chem. 52, 4780–4784 (2004). https://doi.org/10.1021/jf049889j

    Article  CAS  PubMed  Google Scholar 

  29. W. Brand-Williams, M.-E. Cuvelier, C. Berset, LWT-Food Sci. Techno. 28, 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  30. M. Rahman, F. Khan, R. Das, M.A. Hossain, Int. Food Res. J. 23, 2399 (2016)

    CAS  Google Scholar 

  31. S. Ranganna, Handbook of Analysis and Quality Control for Fruit and Vegetable Products (Tata McGraw-Hill Education, New York, 1986)

    Google Scholar 

  32. F.A. Fernandes, S. Rodrigues, J.V. García-Pérez, J.A. Cárcel, Drying Technol. 34, 986–996 (2016). https://doi.org/10.1080/07373937.2015.1090445

    Article  CAS  Google Scholar 

  33. A.O.A.C., Official Methods of Analysis, 17th edn. (AOAC, Gaithersburg, 2000)

    Google Scholar 

  34. A. Baroni, M. Hubinger, J. Dry. Technol. 16, 2083–2094 (1998). https://doi.org/10.1080/07373939808917513

    Article  Google Scholar 

  35. P. Rani, P.P. Tripathy, J. Food Sci. Technol. (2019). https://doi.org/10.1007/s13197-019-03961-w

    Article  PubMed  PubMed Central  Google Scholar 

  36. T. Aktas, P. Ulger, F. Daglioglu, F. Hasturk, J. Food Qual. 36, 411–425 (2013). https://doi.org/10.1111/jfq.12062

    Article  CAS  Google Scholar 

  37. S. Mastrantonio, L. Pereira, M. Hubinger. Mass transfer and difusion coeficient determination in osmotically dehydrated guavas. In International Drying Symposium (2006)

  38. M.R. Khoyi, J. Hesari, J. Food Eng. 78, 1355–1360 (2007). https://doi.org/10.1016/j.jfoodeng.2006.01.007

    Article  CAS  Google Scholar 

  39. O. Corzo, N.J. Bracho, J. Food Eng. 75, 535–541 (2006). https://doi.org/10.1016/j.jfoodeng.2005.05.001

    Article  Google Scholar 

  40. O. Corzo, N. Bracho, LWT-Food Sci. Technol. 41, 1108–1115 (2008). https://doi.org/10.1016/j.lwt.2007.06.018

    Article  CAS  Google Scholar 

  41. Y. Deng, Y.J. Zhao, J. Food Eng. 85, 84–93 (2008). https://doi.org/10.1016/j.jfoodeng.2007.07.016

    Article  Google Scholar 

  42. F.R. Assis, R.M. Morais, A.M. Morais, Food Eng. Rev. 8, 116–133 (2016). https://doi.org/10.1007/s12393-015-9123-1

    Article  Google Scholar 

  43. I. Karabulut, A. Topcu, A. Duran, S. Turan, B. Ozturk, LWT-Food Sci. Technol. 40, 753–758 (2007). https://doi.org/10.1016/j.lwt.2006.05.001

    Article  CAS  Google Scholar 

  44. M. Ali, Y.A. Yusof, N. Chin, M. Ibrahim, Int. Food Res. J. 23, S155–S161 (2016)

    CAS  Google Scholar 

  45. G. Izli, Food Sci. Technol. 37, 139–147 (2017). https://doi.org/10.1590/1678-457x.14516

    Article  Google Scholar 

  46. C.H. Chong, C.L. Law, M. Cloke, C.L. Hii, L.C. Abdullah, W.R.W. Daud, J. Food Eng. 88, 522–527 (2008). https://doi.org/10.1016/j.jfoodeng.2008.03.013

    Article  Google Scholar 

  47. D. Albanese, L. Cinquanta, G. Cuccurullo, M. Di Matteo, Int. J. Food Sci. Technol. 48, 1327–1333 (2013). https://doi.org/10.1111/ijfs.12095

    Article  CAS  Google Scholar 

  48. N.R. Pereira, A. Marsaioli Jr., L.M. Ahrné, J. Food Eng. 81, 79–87 (2007). https://doi.org/10.1016/j.jfoodeng.2006.09.025

    Article  Google Scholar 

  49. R.R. Mphahlele, O.A. Fawole, N.P. Makunga, U.L. Opara, BMC Complement. Altern. Med. 16, 143 (2016). https://doi.org/10.1016/j.jfca.2005.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S. Ding, R. Wang, J. Zhang, G. Li, J. Zhang, S. Ou, Y. Shan, Food Sci. Biotechnol. 26, 1523–1533 (2017). https://doi.org/10.1007/s10068-017-0221-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D.L. Luthria, S. Mukhopadhyay, J. Agric. Food Chem. 54, 41–47 (2006). https://doi.org/10.1021/jf0522457

    Article  CAS  PubMed  Google Scholar 

  52. M.A. Hossain, N.K. Disha, J.H. Shourove, P. Dey, Turk. J. Agric. -Food Sci. Technol. 8, 2749–2755 (2020). https://doi.org/10.24925/turjaf.v8i12.2749-2755.4038

    Article  Google Scholar 

  53. S.M. Jeong, S.Y. Kim, D.R. Kim, S.C. Jo, K. Nam, D. Ahn, S.C. Lee, J. Agric. Food Chem. 52, 3389–3393 (2004). https://doi.org/10.1021/jf049899k

    Article  CAS  PubMed  Google Scholar 

  54. M.A. Hossain, M.Y. Arafat, M. Alam, Food Res. (2021). https://doi.org/10.26656/fr.2017.5(4).035

    Article  Google Scholar 

  55. A.L.M. Ling, Int. J. Pharm. Phytopharmacol. Res. 3, 3 (2014)

    Google Scholar 

  56. P. Marfil, E. Santos, V. Telis, LWT-Food Sci. Technol. 41, 1642–1647 (2008). https://doi.org/10.1016/j.lwt.2007.11.003

    Article  CAS  Google Scholar 

  57. E. Horuz, H. Bozkurt, H. Karataş, M. Maskan, Food Chem. 230, 295–305 (2017). https://doi.org/10.1016/j.foodchem.2017.03.046

    Article  CAS  PubMed  Google Scholar 

  58. L.M. Mauri, S.M. Alzamora, J. Chirife, M. Tomio, Int. J. Food Sci. Technol. 24, 1–9 (1989). https://doi.org/10.1111/j.1365-2621.1989.tb00613.x

    Article  CAS  Google Scholar 

  59. E. Lešková, J. Kubíková, E. Kováčiková, M. Košická, J. Porubská, K. Holčíková, J. Food Compos. Anal. 19, 252–276 (2006). https://doi.org/10.1016/j.jfca.2005.04.014

    Article  CAS  Google Scholar 

  60. S. Bourdoux, D. Li, A. Rajkovic, F. Devlieghere, M. Uyttendaele, Compr. Rev. Food Sci. Food Saf. 15, 1056–1066 (2016). https://doi.org/10.1111/1541-4337.12224

    Article  PubMed  Google Scholar 

  61. M. Leyva Salas, J. Mounier, F. Valence, M. Coton, A. Thierry, E. Coton, Microorganisms 5, 37 (2017). https://doi.org/10.3390/microorganisms5030037

    Article  CAS  PubMed Central  Google Scholar 

  62. N. Victor, C. Peter, K. Raphael, G.H. Tendekayi, G. Jephris, M. Taole, P.R. Portia, Afr. J. Microbiol. Res. 11, 185–193 (2017)

    Article  Google Scholar 

  63. S. Fong-in, H. Nimitkeatkai, T. Prommajak et al., Food Meas. Charact. 15, 3590–3597 (2021). https://doi.org/10.1007/s11694-021-00931-9

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh for providing the laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Afzal Hossain.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, M., Bulbul, M.A.I., Hossain, M.A. et al. Study on the drying kinetics and quality parameters of osmotic pre-treated dried Satkara (Citrus macroptera) fruits. Food Measure 16, 471–485 (2022). https://doi.org/10.1007/s11694-021-01177-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01177-1

Keywords

Navigation