Skip to main content
Log in

Stimulation of secondary metabolite production in Hypoxylon anthochroum by naturally occurring epigenetic modifiers

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In pursuit of discovering novel compounds of pharmacological significance, plants and microbes are the potential sources. Endophytic fungi are well-known producers of a myriad class of bioactive metabolites but in laboratory conditions, a substantial number of biosynthetic pathways remain quiescent or under-expressed in conventional culture conditions. Hence, major potential of them is neglected during regular fermentation process. Epigenetic modifiers are reported to modulate fungal genome by altering the expression of metabolite production. Our present study evidences the induction of cryptic secondary metabolite production by Hypoxylon anthochroum, a foliar endophytic fungus of Carica papaya when treated with extracts of garlic and curry leaves. Garlic (Allium sativum), produces allyl mercaptan and diallyl disulfide as the major constituents of organosulfur compounds, which are known to act as inhibitors of histone deacetylases (HDAC). Similarly, Curry leaves (Murraya koenigii) produce mahanine, a carbazole alkaloid, causes DNA methyltransferase (DNMT) inhibition. Hypoxylon anthochroum, when treated with extract of garlic and curry leaves, resulted in 416.12 and 333.33% increase in yield of secondary metabolites, 89% and 85% increase in antioxidant property respectively, along with enhanced antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. High-performance liquid chromatography analysis of the crude extract of H. anthochroum revealed the induction of 19 and 10 new compounds when treated with garlic and curry leaf extracts, respectively, when compared to untreated control. This study suggests that treatment with HDAC inhibitor in the form of garlic extract was more effective than treatment with DNMT inhibitor in curry leaf extract in inducing cryptic metabolites.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DNMT:

DNA methyltransferase

HDAC:

Histone deacetylase

HPLC:

High performance liquid chromatography

CWT:

Control without treatment

CLT:

Curry leaf treatment

GRT:

Garlic treatment

References

  1. V.B. Deepika, T.S. Murali, K. Satyamoorthy, Microbiol. Res. 182, 125 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. A. De Bary, Bot. Zeitung 44, 378 (1886)

    Google Scholar 

  3. C.W. Bacon, J.F. White, Microbial Endophytes (Marcel Dekker, Inc., New York, 2000), p. 237

    Google Scholar 

  4. A. Bary, Morphologie und Physiologie der Pilze, Flechten und Myxomyceten (W. Engelmann, Leipzig, 1866)

    Book  Google Scholar 

  5. K.D. Hyde, K. Soytong, Fungal Divers. 33, e73 (2008)

    Google Scholar 

  6. J.W. Wang, J.H. Wu, W.Y. Huang, R.X. Tan, Bioresour. Technol. 97, 786 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. V.K. Sharma, J. Kumar, D.K. Singh, A. Mishra, S.K. Verma, S.K. Gond, A. Kumar, N. Singh, R.N. Kharwar, Front. Microbiol. 8, 1126 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  8. S. Pandey, P.J. Cabot, P.N. Shaw, A.K. Hewavitharana, J. Immunotoxicol. 13, 590 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. A. Nugroho, H. Heryani, J.S. Choi, H.-J. Park, Asian Pac. J. Trop. Biomed. 7, 208 (2017)

    Article  Google Scholar 

  10. T.T.T. Nguyen, P.N. Shaw, M. Parat, A.K. Hewavitharana, Mol. Nutr. Food Res. 57, 153 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. E.H.K. Ikram, R. Stanley, M. Netzel, K. Fanning, J. Food Compos. Anal. 41, 201 (2015)

    Article  CAS  Google Scholar 

  12. E. Kuhnert, J. Fournier, D. Peršoh, J.J.D. Luangsa-ard, M. Stadler, Fungal Divers. 64, 181 (2014)

    Article  Google Scholar 

  13. Á. Ulloa-Benítez, Y.M. Medina-Romero, R.E. Sánchez-Fernández, P. Lappe-Oliveras, G. Roque-Flores, G. Duarte Lisci, T. Herrera Suárez, M.L. Macías-Rubalcava, J. Appl. Microbiol. 121, 380 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. M.L. Macías-Rubalcava, R.E. Sánchez-Fernández, G. Roque-Flores, P. Lappe-Oliveras, Y.M. Medina-Romero, Food Microbiol. 76, 363 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Y.M. Medina-Romero, G. Roque-Flores, M.L. Macías-Rubalcava, Appl. Microbiol. Biotechnol. 101, 8209 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. S.E. Helaly, B. Thongbai, M. Stadler, Nat. Prod. Rep. 35(9), 992–1014 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. S. Bertrand, O. Schumpp, N. Bohni, A. Bujard, A. Azzollini, M. Monod, K. Gindro, J.-L. Wolfender, J. Chromatogr. A 1292, 219 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Y.-M. Chiang, K.-H. Lee, J.F. Sanchez, N.P. Keller, C.C.C. Wang, Nat. Prod. Commun. 4, 1505 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. M.R. Andersen, J.B. Nielsen, A. Klitgaard, L.M. Petersen, M. Zachariasen, T.J. Hansen, L.H. Blicher, C.H. Gotfredsen, T.O. Larsen, K.F. Nielsen, Proc. Natl. Acad. Sci. U.S.A. 110, E99 (2013)

    Article  PubMed  Google Scholar 

  20. J.F. Sanchez, A.D. Somoza, N.P. Keller, C.C.C. Wang, Nat. Prod. Rep. 29, 351 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. T.M. Hardy, T.O. Tollefsbol, Epigenomics 3, 503 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. J.-L. Cui, T.-T. Guo, Z.-X. Ren, N.-S. Zhang, M.-L. Wang, PLoS ONE 10, e0118204 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. B. Schulz, U. Wanke, S. Draeger, H.-J. Aust, Mycol. Res. 97, 1447 (1993)

    Article  Google Scholar 

  24. B. Devadatha, V.V. Sarma, R. Jeewon, D.N. Wanasinghe, K.D. Hyde, E.B.G. Jones, Mycol. Prog. 17(7), 791–804 (2018)

    Article  Google Scholar 

  25. M. Rashmi, H. Meena, C. Meena, J.S. Kushveer, S. Busi, A. Murali, V.V. Sarma, Fungal Biol. 122, 998–1012 (2018)

    Article  CAS  PubMed  Google Scholar 

  26. K. Katoh, D.M. Standley, Mol. Biol. Evol. 30, 772 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T. A. Hall, in Nucleic Acids Symp. Ser. ([London]: Information Retrieval Ltd., c1979-c2000., 1999), pp. 95–98

  28. M. A. Miller, W. Pfeiffer, and T. Schwartz, in Gatew. Comput. Environ. Work. (GCE), 2010 (IEEE, 2010), pp. 1–8

  29. D. L. Swofford, PAUP*. Phylogenetic Anal. Using Parsimony (*Other Methods) (2002)

  30. B. Rannala, Z. Yang, J. Mol. Evol. 43, 304 (1996)

    Article  CAS  PubMed  Google Scholar 

  31. O. Zhaxybayeva, J.P. Gogarten, BMC Genom. 3, 4 (2002)

    Article  Google Scholar 

  32. S. Sugiharto, T. Yudiarti, I. Isroli, Antioxidants 5, 6 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  33. L.-H. Huang, M.-Q. Yuan, X.-J. Ao, A.-Y. Ren, H.-B. Zhang, M.-Z. Yang, PLoS ONE 13, e0196996 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. L. Altucci and M. G. Rots, (2016)

  35. J. Paluszczak, V. Krajka-Kuźniak, W. Baer-Dubowska, Toxicol. Lett. 192, 119 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. H. Nian, B. Delage, J.T. Pinto, R.H. Dashwood, Carcinogenesis 29, 1816 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Jagadeesh, S. Sinha, B.C. Pal, S. Bhattacharya, P.P. Banerjee, Biochem. Biophys. Res. Commun. 362, 212 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. M. Rashmi and V. Venkateswara Sarma, in Endophytes and Secondary Metabolites, edited by S. Jha (Springer, Cham, 2018), pp. 1–16

  39. P. Rajendran, E. Ho, D.E. Williams, R.H. Dashwood, Clin. Epigenetics 3, 4 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. G. Li, S. Kusari, C. Golz, H. Laatsch, C. Strohmann, M. Spiteller, J. Nat. Prod. 80, 983 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. S. Agarwal, K.S. Amin, S. Jagadeesh, G. Baishay, P.G. Rao, N.C. Barua, S. Bhattacharya, P.P. Banerjee, Mol. Cancer 12, 99 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Beau, N. Mahid, W.N. Burda, L. Harrington, L.N. Shaw, T. Mutka, D.E. Kyle, B. Barisic, A. Van Olphen, B.J. Baker, Mar. Drugs 10, 762 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S.R. Ul-Hassan, G.A. Strobel, E. Booth, B. Knighton, C. Floerchinger, J. Sears, Microbiology 158, 465 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. X.-L. Yang, T. Awakawa, T. Wakimoto, I. Abe, Tetrahedron Lett. 54, 5814 (2013)

    Article  CAS  Google Scholar 

  45. M. Gharpure, V. Ingle, H. Juneja, R. Choudhari, Int. J. Knowl. Eng. 3, 148 (2012)

    Google Scholar 

  46. F.I. Al-Jenoobi, A.A. Al-Thukair, M.A. Alam, F.A. Abbas, A.M. Al-Mohizea, K.M. Alkharfy, S.A. Al-Suwayeh, Saudi Pharm. J. 22, 564 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  47. G.A. Engwa, E.L. Ayuk, B.U. Igbojekwe, M. Unaegbu, Biochem. Res. Int. (2016). https://doi.org/10.1155/2016/9896575

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors thank the Department of Biotechnology, Pondicherry University, 605014, Puducherry, India, for providing all the facilities. RM thanks CSIR for fellowship, JSK thanks Pondicherry University for fellowship. We also thank UGC-SAP, Govt. of India and DST-FIST, Govt. of India for infrastructural support.

Funding

This work has not been funded by any agency or source.

Author information

Authors and Affiliations

Authors

Contributions

RM and JSK equally contributed to the study. Experimental design and concept by RM. Experiments performed by RM, JSK, DM. Manuscript writing by RM, JSK. Overall supervision, manuscript evaluation and correction by VVS.

Corresponding author

Correspondence to Vemuri Venkateswara Sarma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R., Kushveer, J.S., Majumder, D. et al. Stimulation of secondary metabolite production in Hypoxylon anthochroum by naturally occurring epigenetic modifiers. Food Measure 14, 946–962 (2020). https://doi.org/10.1007/s11694-019-00345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00345-8

Keywords

Navigation