Skip to main content
Log in

Lake-Stream Divergence in Stickleback Life History: A Plastic Response to Trophic Niche Differentiation?

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Speciation can be promoted by phenotypic plasticity if plasticity causes populations in ecologically different habitats to diverge in traits mediating reproductive isolation. Although this pathway can establish reproductive barriers immediately and without genetic divergence, it remains poorly investigated. In threespine stickleback fish, divergence in body size between populations represents a potent source of reproductive isolation because body size often influences reproductive behavior. However, the relative contribution of phenotypic plasticity and genetically based divergence to stickleback body size evolution has not been explored. We here do so by using populations residing contiguously in Lake Constance (Central Europe) and its tributaries, a system where lake fish exhibit strikingly larger size and greater age at maturity than stream fish. Laboratory experiments reveal the absence of substantial genetic divergence in intrinsic growth rates and maturation size thresholds between lake and stream fish. A field transplant experiment further demonstrates that lake fish display the life history typical of stream fish when exposed to stream habitats for one year, confirming that life history divergence in this system is mainly plastic. This plasticity appears to be driven by restricted food availability in the lake relative to the stream habitat. We thus propose that in this stickleback system, the exploitation of different trophic niches immediately promotes reproductive isolation via resource-based plasticity in life history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert, A. Y. K. (2005). Mate choice, sexual imprinting, and speciation: A test of a one-allele isolating mechanism in sympatric sticklebacks. Evolution, 59(4), 927–931.

    Article  PubMed  Google Scholar 

  • Arnegard, M. E., McGee, M. D., Matthews, B., Marchinko, K. B., Conte, G. L., et al. (2014). Genetics of ecological divergence during speciation. Nature,. doi:10.1038/nature13301.

    PubMed Central  PubMed  Google Scholar 

  • Baggerman, B. (1985). The roles of daily and annual biological rhythms in the photoperiodic regulation of the breeding season in the stickleback Gasterosteus aculeatus L. Behaviour, 93(1/4), 1–7.

    Article  Google Scholar 

  • Bernardo, J. (1993). Determinants of maturation in animals. Trends in Ecology & Evolution, 8(5), 166–173.

    Article  CAS  Google Scholar 

  • Berner, D., Adams, D. C., Grandchamp, A.-C., & Hendry, A. P. (2008). Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. Journal of Evolutionary Biology, 21(6), 1653–1665.

    Article  CAS  PubMed  Google Scholar 

  • Berner, D., & Blanckenhorn, W. U. (2007). An ontogenetic perspective on the relationship between age and size at maturity. Functional Ecology, 21(3), 505–512.

    Article  Google Scholar 

  • Berner, D., Grandchamp, A.-C., & Hendry, A. P. (2009). Variable progress toward ecological speciation in parapatry: Stickleback across eight lake-stream transitions. Evolution, 63(7), 1740–1753.

    Article  PubMed  Google Scholar 

  • Berner, D., Kaeuffer, R., Grandchamp, A.-C., Raeymaekers, J. A. M., Räsänen, K., & Hendry, A. P. (2011). Quantitative genetic inheritance of morphological divergence in a lake-stream stickleback ecotype pair: Implications for reproductive isolation. Journal of Evolutionary Biology, 24(9), 1975–1983.

    Article  CAS  PubMed  Google Scholar 

  • Berner, D., Roesti, M., Hendry, A. P., & Salzburger, W. (2010). Constraints on speciation suggested by comparing lake-stream stickleback divergence across two continents. Molecular Ecology, 19(22), 4963–4978.

    Article  PubMed  Google Scholar 

  • Boughman, J. W., Rundle, H. D., & Schluter, D. (2005). Parallel evolution of sexual isolation in sticklebacks. Evolution, 59(2), 361–373.

    Article  PubMed  Google Scholar 

  • Chung, H., Loehlin, D. W., Dufour, H. D., Vaccarro, K., Millar, J. G., & Carroll, S. B. (2014). A single gene affects both ecological divergence and mate choice in Drosophila. Science, 343(6175), 1148–1151.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829–836.

    Article  Google Scholar 

  • Conover, D. O., & Schultz, E. T. (1995). Phenotypic similarity and the evolutionary significance of countergradient variation. Trends in Ecology & Evolution, 10(6), 248–252.

    Article  CAS  Google Scholar 

  • Conte, G. L., & Schluter, D. (2013). Experimental confirmation that size determines mate preference phenotype matching in a stickleback species pair. Evolution, 67(5), 1477–1484.

    PubMed  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland: Sinauer Associates Inc.

    Google Scholar 

  • Craig-Bennett, A. (1931). The reproductive cycle of the three-spined stickleback, Gasterosteus aculeatus, Linn. Philosophical Transactions of the Royal Society B. doi:10.1098/rstb.1931.0005.

  • Crispo, E. (2008). Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. Journal of Evolutionary Biology, 21(6), 1460–1469.

    Article  CAS  PubMed  Google Scholar 

  • Day, T., & Rowe, L. (2002). Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. The American Naturalist, 159(4), 338–350.

    Article  PubMed  Google Scholar 

  • Dufresne, F., FitzGerald, G. J., & Lachance, S. (1990). Age and size-related differences in reproductive success and reproductive costs in threespine sticklebacks (Gasterosteus aculeatus). Behavioral Ecology, 1(2), 140–147.

    Article  Google Scholar 

  • Fitzpatrick, B. M. (2012). Underappreciated consequences of phenotypic plasticity for ecological speciation. International Journal of Ecology,. doi:10.1155/2012/256017.

    Google Scholar 

  • Fuller, R. C. (2008). Genetic incompatibilities in killifish and the role of environment. Evolution, 62(12), 3056–3068.

    Article  PubMed  Google Scholar 

  • Gavrilets, S., Vose, A., Barluenga, M., Salzburger, W., & Meyer, A. (2007). Case studies and mathematical models of ecological speciation. 1. Cichlids in a crater lake. Molecular Ecology, 16(14), 2893–2909.

    Article  PubMed  Google Scholar 

  • Hatfield, T. (1997). Genetic divergence in adaptive characters between sympatric species of stickleback. The American Naturalist, 149(6), 1009–1029.

    Article  CAS  PubMed  Google Scholar 

  • Hawthorne, D. J., & Via, S. (2001). Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature, 412(6850), 904–907.

    Article  CAS  PubMed  Google Scholar 

  • Hendry, A. P. (2004). Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evolutionary Ecology Research, 6(8), 1219–1236.

    Google Scholar 

  • Hendry, A. P., Nosil, P., & Rieseberg, L. H. (2007). The speed of ecological speciation. Functional Ecology, 21(3), 455–464.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hendry, A. P., & Taylor, E. B. (2004). How much of the variation in adaptive divergence can be explained by gene flow? An evaluation using lake-stream stickleback pairs. Evolution, 58(10), 2319–2331.

    Article  PubMed  Google Scholar 

  • Ishikawa, M., & Mori, S. (2000). Mating success and male courtship behaviors in three populations of the threespine stickleback. Behaviour, 137(7–8), 1065–1080.

    Article  Google Scholar 

  • Jonassen, T. M., Imsland, A. K., Fitzgerald, R., Bonga, W., Ham, V., Nævdal, G., et al. (2000). Geographic variation in growth and food conversion efficiency of juvenile Atlantic halibut related to latitude. Journal of Fish Biology, 56(2), 279–294.

    Article  Google Scholar 

  • Kitano, J., Ross, J. A., Mori, S., Kume, M., Jones, F. C., Chan, Y. F., et al. (2009). A role for a neo-sex chromosome in stickleback speciation. Nature, 461(7267), 1079–1083.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozak, G. M., Head, M. L., & Boughman, J. W. (2011). Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks. Proceedings of the Royal Society B: Biological Sciences, 278(1718), 2604–2610.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lavin, P. A., & McPhail, J. D. (1993). Parapatric lake and stream sticklebacks on northern Vancouver Island: Disjunct distribution or parallel evolution? Canadian Journal of Zoology, 71(1), 11–17.

    Article  Google Scholar 

  • Levin, D. A. (2009). Flowering-time plasticity facilitates niche shifts in adjacent populations. New Phytologist, 183(3), 661–666.

    Article  PubMed  Google Scholar 

  • Lexer, C., Lai, Z., & Rieseberg, L. H. (2004). Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: Implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytologist, 161(1), 225–233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowry, D. B., & Willis, J. H. (2010). A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biology,. doi:10.1371/journal.pbio.1000500.

    PubMed Central  PubMed  Google Scholar 

  • Lucek, K., Roy, D., Bezault, E., Sivasundar, A., & Seehausen, O. (2010). Hybridization between distant lineages increases adaptive variation during a biological invasion: Stickleback in Switzerland. Molecular Ecology, 19(18), 3995–4011.

    Article  PubMed  Google Scholar 

  • Lucek, K., Sivasundar, A., & Seehausen, O. (2012). Evidence of adaptive evolutionary divergence during biological invasion. PLoS ONE,. doi:10.1371/journal.pone.0049377.

    PubMed Central  PubMed  Google Scholar 

  • Maan, M. E., & Seehausen, O. (2011). Ecology, sexual selection and speciation. Ecology Letters, 14(6), 591–602.

    Article  PubMed  Google Scholar 

  • Manly, B. F. J. (2007). Randomization, bootstrap and Monte Carlo methods in biology. Boca Raton: Chapman & Hall.

    Google Scholar 

  • McKinnon, J. S., Hamele, N., Frey, N., Chou, J., McAleavey, L., Greene, J., et al. (2012). Male choice in the stream-anadromous stickleback complex. PLoS ONE,. doi:10.1371/journal.pone.0037951.

    Google Scholar 

  • McKinnon, J. S., Mori, S., Blackman, B. K., David, L., Kingsley, D. M., Jamieson, L., et al. (2004). Evidence for ecology’s role in speciation. Nature,. doi:10.1038/nature02556.

    PubMed  Google Scholar 

  • Moser, D., Roesti, M., & Berner, D. (2012). Repeated lake-stream divergence in stickleback life history within a Central European lake basin. PLoS ONE,. doi:10.1371/journal.pone.0050620.

    Google Scholar 

  • Nagel, L., & Schluter, D. (1998). Body size, natural selection, and speciation in sticklebacks. Evolution, 52(1), 209–218.

    Article  Google Scholar 

  • Nijhout, H. F. (2003). The control of body size in insects. Developmental Biology, 261(2003), 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Nosil, P. (2012). Ecological speciation. Oxford: Oxford University.

    Book  Google Scholar 

  • Nosil, P., Vines, T. H., & Funk, D. J. (2005). Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution, 59(4), 705–719.

    PubMed  Google Scholar 

  • Payne, R. B., Payne, L. L., Woods, J. L., & Sorenson, M. D. (2000). Imprinting and the origin of parasite-host species associations in brood-parasitic indigobirds. Vidua chalybeata. Animal Behaviour, 59(1), 69–81.

    Article  PubMed  Google Scholar 

  • Present, T. M. C., & Conover, D. O. (1992). Physiological basis of latitudinal growth differences in Menidia menidia: Variation in consumption or efficiency? Functional Ecology, 6(1), 23–31.

    Article  Google Scholar 

  • R Development Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Raeymaekers, J. A. M., Boisjoly, M., Delaire, L., Berner, D., Räsänen, K., & Hendry, A. P. (2010). Testing for mating isolation between ecotypes: Laboratory experiments with lake, stream and hybrid stickleback. Journal of Evolutionary Biology,. doi:10.1111/j.1420-9101.2010.02133.x.

    PubMed  Google Scholar 

  • Ravinet, M., Prodoehl, P. A., & Harrod, C. (2013). Parallel and nonparallel ecological, morphological and genetic divergence in lake-stream stickleback from a single catchment. Journal of Evolutionary Biology, 26(1), 186–204.

    Article  CAS  PubMed  Google Scholar 

  • Rego, C., Santos, M., & Matos, M. (2007). Quantitative genetics of speciation: Additive and non-additive genetic differentiation between Drosophila madeirensis and Drosophila subobscura. Genetica, 131(2), 167–174.

    Article  PubMed  Google Scholar 

  • Reimchen, T. E., Stinson, E. M., & Nelson, J. S. (1985). Multivariate differentiation of parapatric and allopatric populations of threespine stickleback in the Sangan River watershed, Queen Charlotte Islands. Canadian Journal of Zoology, 63, 2944–2951.

    Article  Google Scholar 

  • Rice, W. R. (1987). Speciation via habitat specialization: The evolution of reproductive isolation as a correlated character. Evolutionary Ecology, 1(4), 301–314.

    Article  Google Scholar 

  • Ritchie, M. G. (2007). Sexual selection and speciation. Annual Review of Ecology Evolution and Systematics, 38, 79–102.

    Article  Google Scholar 

  • Rogers, S. M., & Bernatchez, L. (2006). The genetic basis of intrinsic and extrinsic post-zygotic reproductive isolation jointly promoting speciation in the lake whitefish complex (Coregonus clupeaformis). Journal of Evolutionary Biology, 19(6), 1979–1994.

    Article  CAS  PubMed  Google Scholar 

  • Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352.

    Article  Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.

    Google Scholar 

  • Shimada, Y., Shikano, T., Kuparinen, A., Gonda, A., Leinonen, T., & Merilä, J. (2011). Quantitative genetics of body size and timing of maturation in two nine-spined stickleback (Pungitius pungitius) populations. PLoS ONE,. doi:10.1371/journal.pone.0028859.

    Google Scholar 

  • Silverstein, J. T., Wolters, W. R., & Holland, M. (1999). Evidence of differences in growth and food intake regulation in different genetic strains of channel catfish. Journal of Fish Biology, 54(3), 607–615.

    Article  Google Scholar 

  • Smith, G., Fang, Y., Liu, X., Kenny, J., Cossins, A. R., de Oliveira, C. C., et al. (2013). Transcriptome-wide expression variation associated with environmental plasticity and mating success in cactophilic Drosophila mojavensis. Evolution, 67(7), 1950–1963.

    Article  PubMed  Google Scholar 

  • Sobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315.

    Article  PubMed  Google Scholar 

  • Sommer, U. (1985). Seasonal succession of phytoplankton in Lake Constance. BioScience, 35(6), 351–357.

    Article  Google Scholar 

  • Streisfeld, M. A., Young, W. N., & Sobel, J. M. (2013). Divergent selection drives genetic differentiation in an R2R3-MYB transcription factor that contributes to incipient speciation in Mimulus aurantiacus. PLoS Genetics,. doi:10.1371/journal.pgen.1003385.

    PubMed Central  PubMed  Google Scholar 

  • Terai, Y., Seehausen, O., Sasaki, T., Takahashi, K., Mizoiri, S., Sugawara, T., et al. (2006). Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biology,. doi:10.1371/journal.pbio.0040433.

    PubMed Central  PubMed  Google Scholar 

  • Thibert-Plante, X., & Gavrilets, S. (2013). Evolution of mate choice and the so-called magic traits in ecological speciation. Ecology Letters, 16(8), 1004–1013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thibert-Plante, X., & Hendry, A. P. (2009). Five questions on ecological speciation addressed with individual-based simulations. Journal of Evolutionary Biology, 22(1), 109–123.

    Article  CAS  PubMed  Google Scholar 

  • Thibert-Plante, X., & Hendry, A. P. (2011). The consequences of phenotypic plasticity for ecological speciation. Journal of Evolutionary Biology, 24(2), 326–342.

    Article  CAS  PubMed  Google Scholar 

  • Trudel, M., Tremblay, A., Schetagne, R., & Rasmussen, J. (2001). Why are dwarf fish so small? An energetic analysis of polymorphism in lake whitefish (Coregonus clupeaformis). Canadian Journal of Fisheries and Aquatic Sciences, 58(2), 394–405.

    Article  Google Scholar 

  • Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgments

This work benefited greatly from many people who aided fieldwork, helped raise fish, and provided access to the study populations: Jon Bättig, Dieter Dziuba, Anja Frey, Reinhard Gartner, Friedhelm Glönkler, Manfred Gutsche, Roman Kistler, Patricia Koch, Manuel Konrad, Anton Krüger, Alban Lunardon, Milo Moser, Marcel Nater, Peter Nater, Reinhard Nitzinger, Catherine Peichel, Sabine Person, Marius Roesti, Attila Rüegg, Christian Vögeli, and Markus Zellweger. Walter Salzburger and Patricia Holm kindly shared lab resources and infrastructure. Marco Colombo and two reviewers provided valuable suggestions on the manuscript. Financial support was provided by the Swiss National Science Foundation (grant 31003A 146208/1 to DB) and by the University of Basel.

Ethical standard

All experiments comply with the current laws of Austria, Germany and Switzerland.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Berner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, D., Kueng, B. & Berner, D. Lake-Stream Divergence in Stickleback Life History: A Plastic Response to Trophic Niche Differentiation?. Evol Biol 42, 328–338 (2015). https://doi.org/10.1007/s11692-015-9327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9327-6

Keywords

Navigation