Skip to main content
Log in

Quantitative genetics of speciation: additive and non-additive genetic differentiation between Drosophila madeirensis and Drosophila subobscura

  • Original paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The role of dominance and epistasis in population divergence has been an issue of much debate ever since the neoDarwinian synthesis. One of the best ways to dissect the several genetic components affecting the genetic architecture of populations is line cross analysis. Here we present a study comparing generation means of several life history-traits in two closely related Drosophila species: Drosophila subobscura, D. madeirensis as well as their F 1 and F 2 hybrids. This study aims to determine the relative contributions of additive and non-additive genetic parameters to the differentiation of life-history traits between these two species. The results indicate that both negative dominance and epistatic effects are very important in the differentiation of most traits. We end with considerations about the relevance of these findings for the understanding of the role of non-additive effects in speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aspi J (2000) Inbreeding and outbreeding depression in male courtship song characters in Drosophila montana. Heredity 84:273–282

    Article  PubMed  Google Scholar 

  • Baierl A, Bogdan M, Frommlet F, Futschik A (2006) On locating multiple interacting quantitative trait loci in intercross designs. Genetics 173:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Barton NH, Turelli M (1989) Evolutionary quantitative genetics: how little do we know? Annu Rev Genet 23:337–370

    PubMed  CAS  Google Scholar 

  • Bieri J, Kawecki T (2003) Genetic architecture of differences between populations of cowpea weevil (Callosobruchus maculatus) evolved in the same environment. Evolution 57:274–287

    PubMed  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  PubMed  CAS  Google Scholar 

  • Blows MW, Sokolowski MB (1995) The expression of additive and nonadditive genetic variation under stress. Genetics 140:1149–1159

    PubMed  CAS  Google Scholar 

  • Bradshaw WE, Haggerty BP, Holzapfel CM (2005) Epistasis underlying a fitness trait within a natural population of the pitcher-plant mosquito, Wyeomyia smithii. Genetics 169:485–488

    Article  PubMed  Google Scholar 

  • Breeuwer JAJ, Werren JH (1995) Hybrid breakdown between two haplodiploid species: the role of nuclear and cytoplasmic genes. Evolution 49:705–717

    Article  Google Scholar 

  • Brown AF (1991) Outbreeding depression as a cost of dispersal in the harpacticoid copepod Tigriopus californicus. Biol Bull 181:123–126

    Article  Google Scholar 

  • Burton RS (1990) Hybrid breakdown in developmental time in the copepod Tigriopus Californicus. Evolution 44:1814–1822

    Article  Google Scholar 

  • Carrol SP, Dingle H, Famula TR (2001) Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug, Jadera haematoloma. Genetica 112/113:257–272

    Article  Google Scholar 

  • Carrol SP, Dingle H, Famula TR (2003) Rapid appearance of epistasis during adaptive divergence following colonization. Proc R Soc Lond Ser B 270(Suppl. 1):S80–S83

    Article  Google Scholar 

  • Coyne JA (1992) Genetics and speciation. Nature 355:511–515

    Article  PubMed  CAS  Google Scholar 

  • Coyne JA, Barton NH, Turelli M (1997) A critique of Wright’s shifting balance theory of evolution. Evolution 51:643–671

    Article  Google Scholar 

  • Coyne JA, Barton NH, Turelli M (2000) Is Wright’s shifting balance process important in evolution? Evolution 54:306–317

    PubMed  CAS  Google Scholar 

  • Coyne JA, Orr A (1989) Patterns of speciation in Drosophila. Evolution 43:362–381

    Article  Google Scholar 

  • Coyne JA, Orr A (1997) Patterns of speciation in Drosophila revisited. Evolution 51:295–303

    Article  Google Scholar 

  • Crnokrak P, Roff DA (1995) Dominance variance: associations with selection and fitness. Heredity 75:530–540

    Google Scholar 

  • Edmands S (1999) Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53:1757–1768

    Article  Google Scholar 

  • Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. J Evol Biol 18:524–535

    Article  PubMed  CAS  Google Scholar 

  • Fenster CB, Galloway LF, Chao L (1997) Epistasis and its consequences for the evolution of natural populations. Trends Ecol Evol 12:282–286

    Article  Google Scholar 

  • Fenster CB, Galloway LF (2000) Population differentiation in an annual legume: genetic architecture. Evolution 54:1157–1172

    PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press. UK

    Google Scholar 

  • Fox CW, Stillwell RC, Amarillo AR, Czesak ME, Messina FJ (2004) Genetic architecture of population differences in oviposition behaviour of the seed beetle Callosobruchus maculatus. J Evol Biol 17:1141–1151

    Article  PubMed  CAS  Google Scholar 

  • Fritz RS, Hochwender CG, Brunsfeld SJ, Roche BM (2003) Genetic architecture of susceptibility to herbivores in hybrid willows. J Evol Biol 16:1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton

    Google Scholar 

  • Gilchrist AS, Partridge L (1999) A comparison of the genetic basis of wing size divergence in three parallel body size clines of Drosophila melanogaster. Genetics 153:1775–1787

    PubMed  CAS  Google Scholar 

  • Goodnight CJ, Wade MJ (2000) The ongoing synthesis: a reply to Coyne, Barton and Turelli. Evolution 54:317–324

    PubMed  CAS  Google Scholar 

  • Hatfield T (1997) Genetic divergence in adaptive characters between sympatric species of sticlebacks. Am Nat 149:1009–1029

    Article  Google Scholar 

  • Jonhson NA (2002) Sixty years after Isolating mechanisms, evolution and temperature Muller’s legacy. Genetics 161:939–944

    Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman and Hall, London

    Google Scholar 

  • Khadem M, Krimbas CB (1991) Studies of the species barrier between Drosophila subobscura and D. madeirensis I. The genetics of male hybrid sterility. Heredity 67:157–165

    PubMed  Google Scholar 

  • Khadem M, Krimbas CB (1993) Studies of the species barrier between Drosophila subobscura and D. madeirensis III. How universal are the rules of speciation? Heredity 70:353–361

    PubMed  Google Scholar 

  • Khadem M, Krimbas CB (1997) Studies of the species barrier between Drosophila subobscura and Drosophila madeirensis IV. A genetic dissection of the X chromosome for speciation genes. J Evol Biol 10:909–920

    Article  Google Scholar 

  • Lair KP, Bradshaw WE, Holzapfel CM (1997) Evolutionary divergence of the genetic architecture underlying photoperiodism in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 147:1873–1883

    PubMed  CAS  Google Scholar 

  • Leberg PL (1993) Strategies for population reintroduction: effects of genetic variability on population growth and size. Conserv Biol 7:194–199

    Article  Google Scholar 

  • Li Z, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997a) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  • Li Z, Pinson SRM, Paterson AH, Park WD, Stansel JW (1997b) Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics 145:1139–1148

    PubMed  CAS  Google Scholar 

  • Lynch M (1991) The genetic interpretation of inbreeding depression and outbeeding depression. Evolution 45:622–629

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Macnair MR, Cumbs QJ (1989) The genetic architecture of interspecific variation in Mimulus. Genetics 122:211–222

    PubMed  Google Scholar 

  • Matos M, Rose MR, Rocha Pité MT, Rego C, Avelar T (2000) Adaptation to the laboratory environment in Drosophila subobscura. J Evol Biol 13:9–19

    Article  Google Scholar 

  • Matos M, Avelar T, Rose MR (2002) Variation in the rate of convergent evolution: adaptation to a laboratory environment in Drosophila subobscura. J Evol Biol 15:673–682

    Article  Google Scholar 

  • Mather K, Jinks JL (1982) Biometrical genetics: the study of continuous variation, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Orr HA (2001) The genetics of species differences. Trends Ecol Evol 16:343–350

    Article  Google Scholar 

  • Orr HA, Irving S (2001) Complex epistasis and the genetic basis of hybrid sterility in the Drosophila pseudoobscura Bogota-USA hybridization. Genetics 158:1089–1100

    PubMed  CAS  Google Scholar 

  • Papaceit M, San Antonio J, Prevosti A (1991) Genetic analysis of extra sex combs in the hybrids between Drosophila subobscura and D. madeirensis. Genetica 84:107–114

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Onsins S, Segarra C, Rozas J, Aguadé M (1998) Molecular and chromossomal phylogeny in the obscura group of Drosophila inferred from sequences of the rp49 gene region. Mol Phylogenet Evol 9:33–41

    Article  PubMed  CAS  Google Scholar 

  • Rego C, Matos M, Santos M (2006) Symmetry breaking in interspecific Drosophila hybrids is not due to developmental noise. Evolution 60:746–761

    PubMed  Google Scholar 

  • Starmer WT, Polak M, Wolf LL, Barker JSF (1998) Reproductive characteristics of the flower breeding Drosophila hibisci Bock (Drosophilidae) in eastern Australia: genetic and environmental determinants of ovariole number. Evolution 52:806–815

    Article  Google Scholar 

  • Templeton AR (1981) Mechanisms of speciation—a population genetic approach. Annu Rev Ecol Syst 12:23–48

    Article  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Teotónio H, Matos M, Rose MR (2004) Quantitative genetics of functional characters in Drosophila melanogaster populations subjected to laboratory selection. J Genet 83:265–277

    PubMed  Google Scholar 

  • Turelli M, Orr HA (2000) Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154:1663–1679

    PubMed  CAS  Google Scholar 

  • Wade MJ (2002) A gene’s eye view of epistasis, selection and speciation. J Evol Biol 15:337–346

    Article  CAS  Google Scholar 

  • Wade MJ, Goodnight CJ (1998) The theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52:1537–1553

    Article  Google Scholar 

  • Whitlock MC, Phillips PC, Moore FBG, Tonsor S (1995) Multiple fitness peaks and epistasis. Annu Rev Ecol Syst 26:601–609

    Article  Google Scholar 

  • Waser NM, Price MV (1989) Optimal outcrossing in Ipomopsis aggregata: seed set and offspring fitness. Evolution 43:1097–1109

    Article  Google Scholar 

  • Waser NM, Price MV (1994) Crossing distance effects in Delphinium nelsonii: outbreeding and inbreeding depression in progeny fitness. Evolution 48:842–852

    Article  Google Scholar 

  • Wright S (1977) Evolution and the genetics of populations. Vol. 3 Experimental results and evolutionary deductions. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank M. T. Pité for supervising the initial stages of this work; Anabela Cardoso, António Brehm and Ana Paula Andrade for their valuable assistance in collecting flies; and Ana Duarte, Mário Boieiro, Pedro Simões, Raquel Gonçalves and Teresa Rebelo, for their help during laboratorial work. CR received a grant from Fundação para a Ciência e Tecnologia (PRAXIS XXI//BD/21479/99). MS is partially supported by Fundación Ramón Areces (Spain). This work was partially accomplished within the Acción Integrada Hispano-Portuguesa HP2003-0099, and the Acções Integradas Luso-Espanholas E-36/04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Rego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rego, C., Santos, M. & Matos, M. Quantitative genetics of speciation: additive and non-additive genetic differentiation between Drosophila madeirensis and Drosophila subobscura . Genetica 131, 167–174 (2007). https://doi.org/10.1007/s10709-006-9128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-9128-z

Keywords

Navigation