Skip to main content
Log in

Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

A diverse group of theoretical and empirical studies are integrated into a composite model of sympatric speciation via habitat specialization. It is shown that disruptive selection on a continuous distribution of habitat preference can lead to the evolution of prezygotic reproductive isolation as a correlated character. The form of selection eliminates the major theoretical objections to the process of sympatric speciation. The principal difference between this model and the allopatric model of speciation is that the initial barrier to gene flow between subpopulations is produced by the evolution of gaps in the phenotypic distribution of spatial/temporal habitat use, rather than an extrinsic geographical barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonovics, J. (1968) Evolution in closely adjacent plant populations. VI. Manifold effects of gene flow.Heredity 23, 507–24.

    Google Scholar 

  • Balkau, B. and Feldman, M. W. (1973) Selection for migration modification.Genetics 74, 171–4.

    Google Scholar 

  • Bush, G. L. (1969a) Sympatric host race formation and speciation in frugivorous flies in the genusRhagoletis.Evolution 23, 237–51.

    Google Scholar 

  • Bush, G. L. (1969b) Mating behavior, host specificity, and the ecological significance of sibling species in frugivorous flies of the genusRhagoletis (Diptera, Tephritidae).Amer. Natur. 103, 669–72.

    Google Scholar 

  • Bush, G. L. (1975) Modes of animal speciation.Ann. Rev. Ecol. Syst. 6, 339–64.

    Google Scholar 

  • Bush, G. L. and Howard, D. J. (1986) Allopatric and non-allopatric speciation; assumptions and evidence. InEvolutionary Process and Theory (S. Karlin and E. Nevo eds), pp. 411–38. Academic Press, New York.

    Google Scholar 

  • Caisse, M. and Antonovics, J. (1978) Evolution in closely adjacent plant populations. IX. Evolution of reproductive isolation in clinal populations,Heredity 40, 371–84.

    Google Scholar 

  • Colwell, R. K. (1986) Population structure and sexual selection for host fidelity in the speciation of hummingbird flower mites. InEvolutionary Process and Theory (S. Karlin and E. Nevo eds) pp. 475–95. Academic Press, New York.

    Google Scholar 

  • Crosby, J. L. (1970) The evolution of genetic discontinuity: computer models of the selection of barriers to interbreeding between subspecies.Heredity 25, 253–97.

    Google Scholar 

  • Crow, J. F. and Kimura M. (1970)Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  • Crow, J. F. and Felsenstein, J. (1968) The effect of assortive mating on the genetic composition of a population.Eugen. Quart. 15, 85–97.

    PubMed  Google Scholar 

  • Dickinson, H. and Antonovics, J. (1973) Theoretical considerations of symptric divergence.Amer. Natur. 107, 256–74.

    Google Scholar 

  • Endler, J. A. (1977)Geographic Variation, Speciation, and Clines. Princeton University Press, Princeton.

    Google Scholar 

  • Felsenstein, J. (1981) Skepticism towardsSanta Rosalia, or why are there so few kinds of animals?Evolution 35, 124–38.

    Google Scholar 

  • Falconer, D. S. (1981)Introduction to quantitative genetics. Longman Group, Essex.

    Google Scholar 

  • Futuyma, D. J. and Mayer, G. C. (1980) Non-allopatric speciation in animals.Syst. Zool. 26, 254–71.

    Google Scholar 

  • Haldane J. B. S. (1930) A mathematical theory of natural and artifical selection. Part VI. Isolation.Proceedings of the Cambridge Philosophical Society 26, 220–30.

    Google Scholar 

  • Halliburton, R. and Gall, G. A. E. (1981) Disruptive selection and assortative mating inTribolium castaneum.Evolution 35, 829–43.

    Google Scholar 

  • Hedrick, P. W. (1983)Genetics of Populations. Science Books International, Portola Valley, California.

    Google Scholar 

  • Howard, D. J. and Harrison, R. G. (1984) Habitat segregation in ground crickets: the role of interspecific competition and habitat selection.Ecology 65, 69–76.

    Google Scholar 

  • Kilias, G., Alahiotis, S. N. and Pelecanos, M. (1980) A multifactor genetic investigation of speciation theory usingDrosophila melanogaster.Evolution 34, 730–7.

    Google Scholar 

  • Maynard Smith, J. (1962) Disruptive selection, polymorphism, and sympatric speciation.Nature 195, 60–2.

    Google Scholar 

  • Maynard Smith, J. (1966) Sympatric speciation.Amer. Natur. 100, 637–50.

    Google Scholar 

  • Mayr, E. (1942).Systematics and the Origin of Species. Columia University Press, New York.

    Google Scholar 

  • Mayr, E. (1947). Ecological factors in speciation.Evolution 1, 163–288.

    Google Scholar 

  • Mayr, E. (1963).Animal Species and Evolution. The Belknap Press of Harvard University Press, Cambridge.

    Google Scholar 

  • Moore, W. S. (1979) A single locus mass-action model of assortative mating, with comments on the process of speciation.Heredity 42, 173–86.

    Google Scholar 

  • Moore, W. S. (1981) Assortative mating genes selected along a gradient.Heredity 46, 191–5.

    Google Scholar 

  • Muller, H. J. (1942) Isolating mechanisms, evolution and temperature.Biol. Symp. 6, 71–125.

    Google Scholar 

  • Nagylaki, T. (1977) Selection in one- and two locus systems.Lecture Notes in Biomathematics 15. springer-Verlag, New York.

    Google Scholar 

  • Paterniani, E. (1969) Selection for reproductive isolation between two populations of maize,Zea mays L. Evolution 23, 534–47.

    Google Scholar 

  • Pimentel, D. G., Smith, J. C. and Soans J. S. (1967) A population model of sympatric speciation.Amer. Natur. 101, 493–504.

    Google Scholar 

  • Pimm, S. L. (1979) Sympatric speciation: a simulation model.Biol. J. Linn. Soc. 11, 131–9.

    Google Scholar 

  • Raven, P. H. (1961) Interspecific hybridization as an evolutionary stimulus inOenothera.Proc. Linn. Soc. Lond. 1973, 92–8.

    Google Scholar 

  • Rice, W. R. (1984) Disruptive selection on habitat preference and the evolution of reproductive isolation: a simulation study.Evolution 38, 1251–60.

    Google Scholar 

  • Rice, W. R. (1985) Disruptive selection on habitat preference and the evolution of reproductive isolation: an exploratory experiment.Evolution 39, 645–56.

    Google Scholar 

  • Rosenzweig, M. L. (1978) Competitive speciation.Biol. J. Linn. Soc. 10, 275–89.

    Google Scholar 

  • Salzman, A. G. (1985) Habitat selection in a clonal plant.Science 228, 603–4.

    PubMed  Google Scholar 

  • Schemske, D. W., Wilson, M. F., Melampy, M. N., Miller, L. J., Verner, L., Schemske, K. M. and Best, L. B. (1978) Flowering ecology of some spring woodlands herbs.Ecology 59, 351–66.

    Google Scholar 

  • Slatkin, M. (1982) Pleiotropy and parapatric speciation.Evolution 36, 263–70.

    Google Scholar 

  • Soans, A. B., Pimentel, D., Soans, J. S. (1974) Evolution of reproductive isolation in allopatric and sympatric populations.Amer. Natur. 108, 117–24.

    Google Scholar 

  • Snead, J. S., and Alcock, J. (1985) Aggregation formation and assortative mating in two meloid beetles.Evolution 39, 1123–31.

    Google Scholar 

  • Stratton, G. E. (1986) The inheritance of courtship behavior and its role as a reproductive isolating mechanism in two species ofSchizocosa wolf spiders (Araneae; Lycosidae).Evolution 40, 129–41.

    Google Scholar 

  • Tauber, C. A. and Tauber, M. J. (1977a) Sympatric speciation based on allelic changes at three loci: evidence from natural populations in two habitats.Science 197, 1298–9.

    Google Scholar 

  • Tauber, C. A. and Tauber, M. J. (1977b) A genetic model for sympatric speciation through habitat diversification and seasonal isolation.Nature 268, 702–5.

    PubMed  Google Scholar 

  • Templeton, A. R. (1981) Mechanisms of speciation — a population genetics approachAnn. Rev. Ecol. Syst. 12, 23–48.

    Google Scholar 

  • Thiele, H.-U. (1977)Carabid beetles in their environments. Springer-Verlag, New York.

    Google Scholar 

  • Thoday, J. M. and Gibson J. B. (1970) The probability of isolation by disruptive selection.Amer. Natur. 104, 219–30.

    Google Scholar 

  • Thoday, J. M. and Gibson J. B. (1962) Isolation by disruptive selection.Nature 193, 1164–66.

    PubMed  Google Scholar 

  • Thorpe, W. H. (1945) The evolutionary significance of habitat selection.J. Anim. Ecol. 14, 67–70.

    Google Scholar 

  • Udovic, D. (1980) Frequency dependent selection, disruptive selection, and the evolution of reproductive isolation.Amer. Natur. 116, 621–41.

    Google Scholar 

  • White, M. J. D. (1978)Modes of Speciation. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Wilson, D. S. and Turelli, M. (1986) Stable underdominance and the evolutionary invasion of empty niches.Amer. Natur. 127, 835–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, W.R. Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character. Evol Ecol 1, 301–314 (1987). https://doi.org/10.1007/BF02071555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02071555

Keywords

Navigation