Skip to main content
Log in

A Robotic Polishing Trajectory Planning Method Combining Reverse Engineering and Finite Element Mesh Technology for Aero-Engine Turbine Blade TBCs

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The roughness of thermal barrier coatings (TBCs) prepared on the surface of aero-engine turbine blades affects the lifetime of the coating and the life cycle and aerodynamic performance of the blades. To reduce the TBC surface roughness, this study proposes a robot polishing trajectory planning method that combines reverse engineering and finite element mesh technology. First, a 3D model of the blade was reconstructed in reverse engineering by using the fast surface modeling method. Then, a dense mesh with controlled spacing was obtained by mapping the finite element mesh arbitrary quadrilateral elements on the surface of the blade model. Finally, a robot polishing path of the blade was generated by sorting the index of mesh nodes. Using this approach, polishing experiments of aero-engine turbine blades were systematically carried out, and the coordinate system conversion method from the robot off-line programming simulation environment to the actual work station was used to map the robot trajectory. Meanwhile, the point cloud registration method was introduced to improve the system calibration accuracy. The experiments showed that the technical solution proposed in this paper could reduce the overall surface roughness of the thermal barrier coating from above Ra 8 μm to about Ra 0.5 μm, which contributes to the performance improvement for the TBCs of aero-engine blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. S.H.Y. Najjar and A.I. Balawneh, Optimization of Gas Turbines for Sustainable Turbojet Propulsion, Propul. Power Res., 2015, 4(2), p 114–121.

    Article  Google Scholar 

  2. J.H. Perepezko, The Hotter the Engine, the Better, Science, 2009, 326(5956), p 1068–1069.

    Article  CAS  Google Scholar 

  3. M.D. Barringer, K.A. Thole and M.D. Polanka, Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine, J. Turbomach., 2009, 131(2), p 021008.

    Article  Google Scholar 

  4. J.S. Park, D.H. Lee, D. Rhee, S.H. Kang and H.H. Cho, Heat Transfer and Film Cooling Effectiveness on the Squealer Tip of a Turbine Blade, Energy, 2014, 72, p 331–343.

    Article  Google Scholar 

  5. J.C. Han and M. Huh, Recent Studies in Turbine Blade Internal Cooling, Heat Transf. Res., 2010, 41(8), p 803–828.

    Article  Google Scholar 

  6. K. Bochenek and M. Basista, Advances in Processing of NiAl Intermetallic Alloys and Composites for High Temperature Aerospace Applications, Prog. Aerosp. Sci., 2015, 79, p 136–146.

    Article  Google Scholar 

  7. W. Beele, G. Marijnissen and A. van Lieshout, The Evolution of Thermal Barrier Coatings—Status and Upcoming Solutions for Today’s Key Issues, Surf. Coat. Technol., 1999, 120–121, p 61–67.

    Article  Google Scholar 

  8. R.A. Miller, Current Status of Thermal Barrier Coatings—An Overview, Surf. Coat. Technol., 1987, 30(1), p 1–11.

    Article  CAS  Google Scholar 

  9. G. Mauer, M.O. Jarligo, D.E. Mack and R. Vassen, Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray Technol., 2013, 22(5), p 646–658.

    Article  Google Scholar 

  10. S. Bose and J. Demasi-Marcin, Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt and Whitney, J. Therm. Spray Technol., 1997, 6(1), p 99–104.

    Article  CAS  Google Scholar 

  11. N.P. Padture, M. Gell and E.H. Jordan, Materials Science—Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280–284.

    Article  CAS  Google Scholar 

  12. T. Sadowski and P. Golewski, Multidisciplinary Analysis of the Operational Temperature Increase of Turbine Blades in Combustion Engines by Application of the Ceramic Thermal Barrier Coatings (TBC), Comput. Mater. Sci., 2011, 50(4), p 1326–1335.

    Article  CAS  Google Scholar 

  13. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35–42.

    Article  CAS  Google Scholar 

  14. R. Vassen, M.O. Jarligo, T. Steinke, D.E. Mack and D. Stover, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938–942.

    Article  CAS  Google Scholar 

  15. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi et al., The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376–1440.

    Article  CAS  Google Scholar 

  16. Q.M. Yu, Q. He and F.L. Ning, Influence of Interface Morphology on Erosion Failure of Thermal Barrier Coatings, Ceram. Int., 2018, 44(17), p 21349–21357.

    Article  CAS  Google Scholar 

  17. J.P. Bons, A review of Surface Roughness Effects in Gas Turbines, J. Turbomach., 2010, 132(2), p 021004.

    Article  Google Scholar 

  18. S. Sampath, U. Schulz, M.O. Jarligo and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, Mrs Bull., 2012, 37(10), p 903–910.

    Article  CAS  Google Scholar 

  19. Y.Z. Fu, X.P. Wang, H. Gao, H.B. Wei and S.C. Li, Blade Surface Uniformity of Blisk Finished by Abrasive Flow Machining, Int. J. Adv. Manuf. Technol., 2016, 84(5–8), p 1725–1735.

    Google Scholar 

  20. S.J. Zhang, Y.P. Zhou, H.J. Zhang, Z.W. Xiong and S. To, Advances in Ultra-Precision Machining of Micro-Structured Functional Surfaces and Their Typical Applications, Int. J. Mach. Tool Manuf., 2019, 142, p 16–41.

    Article  CAS  Google Scholar 

  21. Y.X. Song, W. Liang and Y. Yang, A Method for Grinding Removal Control of a Robot Belt Grinding System, J. Intell. Manuf., 2012, 23(5), p 1903–1913.

    Article  Google Scholar 

  22. W. Wang and C. Yun, A Path Planning Method for Robotic Belt Surface Grinding, Chin. J. Aeronaut., 2011, 24(4), p 520–526.

    Article  Google Scholar 

  23. J.A. Dieste, A. Fernández, D. Roba, B. Gonzalvo and P. Lucas, Automatic Grinding and Polishing Using Spherical Robot, Procedia Eng., 2013, 63, p 938–946.

    Article  Google Scholar 

  24. F. Rafieian, B. Hazel and Z. Liu, Regenerative Instability Of Impact-Cutting Material Removal in the Grinding Process Performed by a Flexible Robot Arm, Procedia CIRP, 2014, 14, p 406–411.

    Article  Google Scholar 

  25. P. Zhou, X. Zhao, B. Tao and H. Ding, Time-Varying Isobaric Surface Reconstruction and Path Planning for Robotic Grinding of Weak-Stiffness Workpieces, Robot Cim Int. Manuf., 2020, 64, 101945.

    Article  Google Scholar 

  26. Y. Lee, Non-isoparametric Tool Path Planning by Machining Strip Evaluation for 5-Axis Sculptured Surface Machining, Comput. Aided Des., 1998, 30(7), p 559–570.

    Article  Google Scholar 

  27. S. Ding, M.A. Mannan, A.N. Poo, D. Yang and Z. Han, The Implementation of Adaptive Isoplanar Tool Path Generation for the Machining of Free-Form Surfaces, Int. J. Adv. Manuf. Technol., 2005, 26(7–8), p 852–860.

    Article  Google Scholar 

  28. Z.H. Xie, F.G. Xie, X.J. Liu and J.S. Wang, Global G(3) Continuity Toolpath Smoothing for a 5-DoF Machining Robot with Parallel Kinematics, Robot Cim-Int. Manuf., 2021, 67, p 102018.

    Article  Google Scholar 

  29. D.Y. Chang and Y.M. Chang, A Freeform Surface Modelling System Based on Laser Scan Data for Reverse Engineering, Int. J. Adv. Manuf. Technol., 2002, 20(1), p 9–19.

    Article  Google Scholar 

  30. K.H. Lee, H. Woo and T. Suk, Data Reduction Methods for Reverse Engineering, Int. J. Adv. Manuf. Technol., 2001, 17(10), p 735–743.

    Article  Google Scholar 

  31. G.Q. Jin, W.D. Li and L. Gao, An adaptive Process Planning Approach of Rapid Prototyping and Manufacturing, Robot Cim-Int. Manuf., 2013, 29(1), p 23–38.

    Article  Google Scholar 

  32. H.B. Jung and K. Kim, A New Parameterisation Method for NURBS Surface Interpolation, Int. J. Adv. Manuf. Technol., 2000, 16(11), p 784–790.

    Article  Google Scholar 

  33. M. Aigner, L. Gonzalez-Vega, B. Juttler, M. L. Sampoli, Computing Isophotes on Free-Form Surfaces Based on Support Function Approximation, in 2009-01-01; York, United Kingdom (Springer, 2009), pp. 1–18

  34. V. Weiss, L. Andor, G. Renner and T. Varady, Advanced Surface Fitting Techniques, Comput. Aided Geom. D, 2002, 19(1), p 19–42.

    Article  Google Scholar 

  35. R. Sevilla, S. Fernandez-Mendez and A. Huerta, 3D NURBS-Enhanced Finite Element Method (NEFEM), Int. J. Numer. Methods Eng., 2011, 88(2), p 103–125.

    Article  Google Scholar 

  36. Z.H. Cai, H. Liang, S.H. Quan, S.H. Deng, C.N. Zeng and F. Zhang, Computer-Aided Robot Trajectory Auto-Generation Strategy in Thermal Spraying, J. Therm. Spray Technol., 2015, 24(7), p 1235–1245.

    Article  Google Scholar 

  37. E. Carrera, Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells, Archiv. Comput. Method E, 2002, 9(2), p 87–140.

    Article  Google Scholar 

  38. M. Fredriksson and N.S. Ottosen, Fast and Accurate 4-Node Quadrilateral, Int. J. Numer. Methods Eng., 2004, 61(11), p 1809–1834.

    Article  Google Scholar 

  39. P. Besl and H.D. Mckay, A Method for Registration of 3-D Shapes, IEEE Trans. Pattern Anal. Mach. Intell., 1992, 14, p 239–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Cai, Z., Chen, Y. et al. A Robotic Polishing Trajectory Planning Method Combining Reverse Engineering and Finite Element Mesh Technology for Aero-Engine Turbine Blade TBCs. J Therm Spray Tech 31, 2050–2067 (2022). https://doi.org/10.1007/s11666-022-01434-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01434-9

Keywords

Navigation