Skip to main content

Advertisement

Log in

Thermal Shock Resistance and Bonding Strength of Novel-Structured Thermal Barrier Coatings with Different Microstructure

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Structural tailoring is an effective method for improving the performance of thermal barrier coatings. In this study, embedded micro-agglomerated particle (EMAP) coatings were fabricated using a non-conventional air plasma spray method. The effects of microstructure of EMAP coating on the bond strength and thermal shock lifetime were investigated in detail. A finite element model was also proposed to evaluate the stress distribution of the EMAP coatings. Results show that the EMAP coatings exhibited composite structure, in which micro-agglomerated particles are embedded in the coating matrix. Both the total porosity and thermal shock lifetime of the coatings decreased with the decrease in plasma gun speed from 500 to 150 mm/s. Meanwhile, with the increase in feed rate of ‘Powder 2,’ the embedded particles in the coating become noticeable. The thermal shock lifetime and bond strength of the coating deposited by highest ‘Powder 2’ feed rate were approximately 124 cycles and 21.5 MPa. A finite element model implies the thermal stress concentration of the coatings gradually decreased with an increase in the embedded particle area, and the propagation of cracks consumed more energy. Using this novel coating deposition method, the microstructure in EMAP coatings can be conveniently adjusted to obtain the designed coating performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6, p 35-42.

    Article  CAS  Google Scholar 

  2. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284.

    Article  CAS  Google Scholar 

  3. H. Herman, S. Sampath, and R. McCune, Thermal Spray: Current Status and Future Trends, MRS Bull., 2000, 25(7), p 17-25.

    Article  CAS  Google Scholar 

  4. H.J. Fang, W.Z. Wang, J.B. Huang, and D.D. Ye, Investigation of CMAS Resistance of Sacrificial Plasma-Sprayed Mullite-YSZ Protective Layer on 8YSZ Thermal Barrier Coating, Corros. Sci., 2020, 173, p 108764.

    Article  CAS  Google Scholar 

  5. B. Ercan, K.J. Bowman, R.W. Trice, H. Wang, and W. Porter, Effect of Initial Powder Morphology on Thermal and Mechanical Properties of Stand-Alone Plasma-Sprayed 7 wt.% Y2O3–ZrO2 Coatings, Mat. Sci. Eng. A, 2006, 435, p 212-220.

    Article  Google Scholar 

  6. S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS Bull., 2012, 37, p 903-910.

    Article  CAS  Google Scholar 

  7. J. Ilavsky, G.G. Long, A. Allen, and C. Berndt, Evolution of the Void Structure in Plasma-Sprayed YSZ Deposits During Heating, Mat. Sci. Eng. A, 1999, 272, p 215-221.

    Article  Google Scholar 

  8. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33, p 383-417.

    Article  CAS  Google Scholar 

  9. W. Chi and S. Sampath, Microstructure–Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia coatings, J. Am. Ceram. Soc., 2008, 91, p 2636-2645.

    Article  CAS  Google Scholar 

  10. A.G. Evans, D. Mumm, J. Hutchinson, G. Meier, and F. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 45, p 505-553.

    Article  Google Scholar 

  11. S.R. Choi, D.M. Zhu, and R.A. Miller, Effect of Sintering on Mechanical Properties of Plasma-Sprayed Zirconia-Based Thermal Barrier Coatings, J. Am. Ceram. Soc., 2010, 88, p 2859-2867.

    Article  Google Scholar 

  12. H.B. Guo, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density, Surf. Coat. Technol., 2004, 186, p 353-363.

    Article  CAS  Google Scholar 

  13. D. Chen, R.R. Heller, and C. Dambra, Segmented Thermal Barrier Coatings for ID and OD Components Using the SinplexPro Plasma Torch, J. Therm. Spray Tech., 2019, 28, p 1664-1673.

    Article  Google Scholar 

  14. M. Karger, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior, Surf. Coat. Technol., 2011, 206, p 16-23.

    Article  CAS  Google Scholar 

  15. D. Chen, C. Dambra, and M. Dorfman, Process and Properties of Dense and Porous Vertically-Cracked Yttria Stabilized Zirconia Thermal Barrier Coatings, Surf. Coat. Technol., 2020, 404, p 126467.

    Article  CAS  Google Scholar 

  16. X. Chen, T. Ohnuki, S. Kuroda, M. Gizynski, H. Araki, H. Murakami, M. Watanabe, and Y. Sakka, Columnar and DVC-Structured Thermal Barrier Coatings Deposited by Suspension Plasma Spray: High-Temperature Stability and Their Corrosion Resistance to the Molten Salt, Ceram. Int., 2016, 42, p 16822-16832.

    Article  CAS  Google Scholar 

  17. E. Bakan and R. Vaßen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26, p 992-1010.

    Article  CAS  Google Scholar 

  18. F.F. Zhou, Y. Wang, L. Wang, Y.M. Wang, W.L. Chen, C.X. Huang, and M. Liu, Synthesis and Characterization of Nanostructured t′-YSZ Spherical Feedstocks for Atmospheric Plasma Spraying, J. Alloys Compd., 2018, 740, p 610-616.

    Article  CAS  Google Scholar 

  19. M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings, Surf. Coat. Technol., 2001, 146, p 48-54.

    Article  Google Scholar 

  20. J.S. Wang, J.B. Sun, H. Zhang, S.J. Dong, J.N. Jiang, L.H. Deng, X. Zhou, and X.Q. Cao, Effect of Spraying Power on Microstructure and Property of Nanostructured YSZ Thermal Barrier Coatings, J. Alloys Compd., 2018, 730, p 471-482.

    Article  CAS  Google Scholar 

  21. Z.L. Wu, L.Y. Ning, Q.H. Yu, and C.G. Zhou, Effect of Thermal Exposure on Mechanical Properties of a Plasma-Sprayed Nanostructured Thermal Barrier Coating, J. Therm. Spray Technol., 2012, 21, p 169-175.

    Article  CAS  Google Scholar 

  22. G.R. Li, G.J. Yang, C.X. Li, and C.J. Li, Stage-Sensitive Microstructural Evolution of Nanostructured TBCs During Thermal Exposure, J. Eur. Ceram. Soc., 2018, 38, p 3325-3332.

    Article  CAS  Google Scholar 

  23. J.B. Huang, W.Z. Wang, Y.J. Li, H.J. Fang, D.D. Ye, X.C. Zhang, and S.T. Tu, Improve Durability of Plasma-Splayed Thermal Barrier Coatings by Decreasing Sintering-Induced Stiffening in Ceramic Coatings, J. Eur. Ceram. Soc., 2020, 40, p 1433-1442.

    Article  CAS  Google Scholar 

  24. J.B. Huang, W.Z. Wang, Y.J. Li, H.J. Fang, D.D. Ye, X.C. Zhang, and S.T. Tu, Novel-Structured Plasma-Sprayed Thermal Barrier Coatings with Low Thermal Conductivity, High Sintering Resistance and High Durability, Ceram. Int., 2021, 47, p 5156-5167.

    Article  CAS  Google Scholar 

  25. J.B. Huang, W.Z. Wang, Y.J. Li, H.J. Fang, D.D. Ye, X.C. Zhang, and S.T. Tu, A Novel Strategy to Control the Microstructure of Plasma-Sprayed YSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2020, 402, p 126304.

    Article  CAS  Google Scholar 

  26. J.B. Huang, W.Z. Wang, X. Lu, D.D. Hu, Z.Q. Feng, and T.X. Guo, Effect of Particle Size on the Thermal Shock Resistance of Plasma-Sprayed YSZ Coatings, Coatings, 2017, 7, p 150.

    Article  Google Scholar 

  27. E.P. Busso, Z.Q. Qian, M.P. Taylor, and H.E. Evans, The Influence of Bond Coat and Top Coat Mechanical Properties on Stress Development in Thermal Barrier Coating Systems, Acta Mater., 2009, 57, p 2349-2361.

    Article  CAS  Google Scholar 

  28. C. Zhou, N. Wang, and H. Xu, Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings, Mater. Sci. Eng. A, 2007, 452(452), p 569-574.

    Article  Google Scholar 

  29. G.R. Li, B.W. Lv, G.J. Yang, W.X. Zhang, C.X. Li, and C.J. Li, Relationship Between Lamellar Structure and elastic modulus of Thermally Sprayed Thermal Barrier Coatings with Intra-Splat Cracks, J. Therm. Spray Technol., 2015, 24, p 1355-1367.

    Article  CAS  Google Scholar 

  30. R. Ghasemi and H. Vakilifard, Plasma-Sprayed Nanostructured YSZ Thermal Barrier Coatings: Thermal Insulation Capability and Adhesion Strength, Ceram. Int., 2017, 43, p 8556-8563.

    Article  CAS  Google Scholar 

  31. C.R.C. Lima and R.D.E. Trevisan, Temperature Measurements and Adhesion Properties of Plasma Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 1999, 8, p 323-327.

    Article  CAS  Google Scholar 

  32. V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings, J. Therm. Spray Technol., 2002, 12, p 370-376.

    Article  Google Scholar 

  33. H. Zhang, J.Y. Zeng, J.Y. Yuan, P.P. Liang, X. Zhou, S. Chen, S.W. Duo, S.J. Dong, J.N. Jiang, L.H. Deng, and X.Q. Cao, Spray Power-Governed Microstructure and Composition, and their Effects on Properties of Lanthanum-Cerium-Tantalum-Oxide Thermal Barrier Coating, Ceram. Int., 2020, 46, p 18114-18222.

    Article  CAS  Google Scholar 

  34. S.H. Leigh and C.C. Berndt, A Test for Coating Adhesion on Flat Substrates—A Technical Note, J. Therm. Spray Technol., 1994, 3, p 184-190.

    Article  CAS  Google Scholar 

  35. J.A. Krogstad, S. Kramer, D.M. Lipkin, C.A. Johnson, D.R.G. Mitchell, J.M. Cairney, and C.G. Levi, Phase Stability of t′-Zirconia-Based Thermal Barrier Coatings: Mechanistic Insights, J. Am. Ceram. Soc., 2011, 94, p s168-s177.

    Article  CAS  Google Scholar 

  36. W. Huang, Y. Zhao, X. Fan, X. Meng, Y. Wang, X. Cai, X.Q. Cao, and Z. Wang, Effect of Bond Coats on Thermal Shock Resistance of Thermal Barrier Coatings Deposited onto Polymer Matrix composites Via Air Plasma Spray Process, J. Therm. Spray. Technol., 2013, 22, p 918-925.

    Article  CAS  Google Scholar 

  37. A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48, p 3963-3976.

    Article  CAS  Google Scholar 

  38. J.Q. Shi, T.B. Zhang, B. Sun, B. Wang, X.H. Zhang, and L. Song, Isothermal Oxidation and TGO Growth Behavior of NiCoCrAlY-YSZ Thermal Barrier Coatings on a Ni-Based Superalloy, J. Alloys Compd., 2020, 844, p 156093.

    Article  CAS  Google Scholar 

  39. A.G. Evans, M.Y. He, and J.W. Hutchinson, Mechanics-Based Scaling Laws for the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 249-271.

    Article  CAS  Google Scholar 

  40. W.X. Weng, Z.H. Zheng, and Q. Li, Cracking Evolution of Atmospheric Plasma-Sprayed YSZ Thermal Barrier Coatings Subjected to Isothermal Heat Treatment, Surf. Coat. Technol., 2020 https://doi.org/10.1016/j.surfcoat.2020.125924

    Article  Google Scholar 

  41. L. Zhang, Y. Bai, T. He, W. Fan, Y.S. Ma, H.B. Liu, Y. Wang, Z.D. Chang, and Y.X. Kang, Performance of Plasma-Sprayed Thermal Barrier Coating with Engineered Unmelted Nano-Particle Contents, Surf. Coat. Technol., 2019, 368, p 67-78.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research is sponsored by the National Natural Science Foundation of China (Grant No. 51775189), Shanghai Aerospace Science and Technology Innovation Fund (SAST2019056) and Shanghai Commercial Aero Engine Joint Innovation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weize Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Wang, W., Huang, J. et al. Thermal Shock Resistance and Bonding Strength of Novel-Structured Thermal Barrier Coatings with Different Microstructure. J Therm Spray Tech 31, 1540–1555 (2022). https://doi.org/10.1007/s11666-022-01353-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01353-9

Keywords

Navigation