Skip to main content
Log in

Effect of Thermal Exposure on Mechanical Properties of a Plasma-Sprayed Nanostructured Thermal Barrier Coating

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A nanostructured thermal barrier coating (TBC) was deposited by air plasma spraying. The effect of microstructural evolution on nano-hardness and Young’s modulus has been investigated by nanoindentation technique after exposure at 1200 °C in air for different times. The results showed that the sintering process of nanostructured TBC at 1200 °C was divided into two stages. TBC completely kept the nanostructure with the grain size <100 nm at the first stage of 10 h thermal exposure. The nanostructure was lost gradually at the second stage from 10 to 200 h thermal exposure. During the first stage, nano-hardness and Young’s modulus increased rapidly for TBC densification, and Weibull bimodal distribution of both Young’s modulus and nano-hardness disappeared as grain grew and most microcracks were healed. The structure of TBC did not change basically, and nano-hardness and Young’s modulus increased slightly at the second stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  CAS  Google Scholar 

  2. A. Aygun, A.L. Vasiliev, N.P. Padture, and X.Q. Ma, Novel Thermal Barrier Coatings That are Resistant to High-Temperature Attack by Glassy Deposits, Acta Mater., 2007, 55, p 6734-6745

    Article  CAS  Google Scholar 

  3. L.D. Xie, D.Y. Chen, E.H. Jordan, A. Ozturk, F. Wu, X.Q. Ma, B.M. Cetegen, and M. Gell, Formation of Vertical Cracks in Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201, p 1058-1064

    Article  CAS  Google Scholar 

  4. B. Ercan, K.J. Bowman, R.W. Trice, H. Wang, and W. Porter, Effect of Initial Powder Morphology on Thermal and Mechanical Properties of Stand-Alone Plasma-Sprayed 7 wt.% Y2O3-ZrO2 Coatings, Mater. Sci. Eng. A, 2006, 435-436, p 212-220

    Article  Google Scholar 

  5. C.G. Zhou, N. Wang, Z.B. Wang, S.K. Gong, and H.B. Xu, Thermal Cycling Life and Thermal Diffusivity of a Plasma-Sprayed Nanostructured Thermal Barrier Coating, Scripta Mater., 2004, 51, p 945-948

    Article  Google Scholar 

  6. R.S. Lima and B.R. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effects, Mater. Sci. Eng. A, 2008, 485, p 182-193

    Article  Google Scholar 

  7. C.G. Zhou, N. Wang, and H.B. Xu, Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings, Mater. Sci. Eng. A, 2007, 452-453, p 569-574

    Article  Google Scholar 

  8. N. Zotov, M. Bartsch, and G. Eggeler, Thermal Barrier Coating Systems—Analysis of Nanoindentation Curves, Surf. Coat. Technol., 2009, 203, p 2064-2072

    Article  CAS  Google Scholar 

  9. R.S. Lima, A. Kucuk, and C.C. Berndt, Bimodal Distribution of Mechanical Properties on Plasma Sprayed Nanostructured Partially Stabilized Zirconia, Mater. Sci. Eng. A, 2002, 327, p 224-232

    Article  Google Scholar 

  10. R.S. Lima, A. Kucuk, and C.C. Berndt, Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings, Surf. Coat. Technol., 2001, 135, p 166-172

    Article  CAS  Google Scholar 

  11. N. Wang, C.G. Zhou, S.K. Gong, and H.B. Xu, Heat Treatment of Nanostructured Thermal Barrier Coating, Ceram. Int., 2007, 33, p 1075-1081

    Article  CAS  Google Scholar 

  12. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, Mater. Res., 1992, 7, p 1564-1583

    Article  CAS  Google Scholar 

  13. B.K. Jang and H. Matsubara, Influence of Porosity on Hardness and Young’s Modulus of Nanoporous EB-PVD TBCs by Nanoindentation, Mater. Lett., 2005, 59, p 3462-3466

    Article  CAS  Google Scholar 

  14. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, Inc., London, 1954, p 138-145

    Google Scholar 

  15. L.L. Shaw and D. Goberman, The Dependency of Microstructure and Properties of Nanostructured Coatings on Plasma Spray Conditions, Surf. Coat. Technol., 2000, 130, p 1-8

    Article  CAS  Google Scholar 

  16. P.L.N. Murthy, N.N. Nemeth, D.N. Brewer, and S. Mital, Probabilistic Analysis of a SiC/SiC Ceramic Matrix Composite Turbine Vane, Compos. Part B: Eng., 2008, 39, p 694-703

    Article  Google Scholar 

  17. H. Zhou, F. Li, B. He, J. Wang, and B.D. Sun, Air Plasma Sprayed Thermal Barrier Coatings on Titanium Alloy Substrates, Surf. Coat. Technol., 2007, 201, p 7360-7367

    Article  CAS  Google Scholar 

  18. S. Guo and Y. Kagawa, Effect of Thermal Exposure on Hardness and Young’s Modulus of EB-PVD Yttria-Partially-Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2006, 32, p 263-270

    Article  CAS  Google Scholar 

  19. A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, D. Basu, and N.R. Bandyopadhyay, Nanoindentation Study of Microplasma Sprayed Hydroxyapatite Coating, Ceram. Int., 2009, 35, p 2295-2304

    Article  CAS  Google Scholar 

  20. Y.S. Yin and J. Lin, Zirconia Ceramics and Composite Materials, 1st ed., Chemical Industry Press, Beijing, 2004

    Google Scholar 

  21. Y.S. Yin, S.G. Chen, and Y.C. Liu, Zirconia Ceramics Doped Stability and Growth Dynamics, 1st ed., Chemical Industry Press, Beijing, 2004

    Google Scholar 

  22. E.R. Leite, T.R. Giraldi, F.M. Pontes, E. Longo, A. Beltrán, and J. Andrés, Crystal Growth in Colloidal Tin Oxide Nanocrystals Induced by Coalescence at Room Temperature, Appl. Phys. Lett., 2003, 83(8), p 1566-1569

    Article  CAS  Google Scholar 

  23. R.L. Penn and J.F. Banfield, Morphology Development and Crystal Growth in Nanocrystalline Aggregates Under Hydrothermal Conditions: Insights from Titania, Geochim. Cosmochim. Acta, 1999, 63(10), p 1549-1557

    Article  CAS  Google Scholar 

  24. Q.H. Yu, C.G. Zhou, H.Y. Zhang, and F. Zhao, Thermal Stability of Nanostructured 13 wt.% Al2O3-8 wt.% Y2O3-ZrO2 Thermal Barrier Coatings, Eur. Ceram. Soc., 2010, 30, p 889-897

    Article  CAS  Google Scholar 

  25. J.Y. Kwon, J.H. Lee, H.C. Kim, Y.G. Jung, U. Paik, and K.S. Lee, Effect of Thermal Fatigue on Mechanical Characteristics and Contact Damage of Zirconia-Based Thermal Barrier Coatings with HVOF-Sprayed Bond Coat, Mater. Sci. Eng. A, 2006, 429, p 173-180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chungen Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Ni, L., Yu, Q. et al. Effect of Thermal Exposure on Mechanical Properties of a Plasma-Sprayed Nanostructured Thermal Barrier Coating. J Therm Spray Tech 21, 169–175 (2012). https://doi.org/10.1007/s11666-011-9704-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9704-3

Keywords

Navigation