Skip to main content
Log in

Microwave-Assisted Post-processing of Detonation Gun-Sprayed Coatings for Better Slurry and Cavitation Erosion Resistance

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Slurry and cavitation erosion often limits the durability of many fluid machines such as hydroturbines, pumps, and propellers. Despite good resistance against slurry erosion, thermal spray coatings generally exhibit poor resistance against cavitation erosion. The performance of thermal spray coatings under cavitation erosion is limited by the presence of defects such as pores, splat boundaries, and limited adhesion with the substrate. In the present work, we performed post-processing of the WC-10Co-4Cr and Ni coatings deposited using the detonation gun process. For post-processing, microwave technique was used owing to its capability for atomic-level heating. The microstructural characterization of the as-sprayed and post-processed coatings showed significant homogenization for the latter. Compared to the typical lamellar structure of as-sprayed, the processed samples exhibited a columnar structure with metallurgical bonding with the substrate. The mechanical properties of the coatings were significantly improved after post-processing owing to the elimination of splat boundaries and pores which significantly enhanced the cavitation and slurry erosion resistance. Post-processed coatings showed at least ten times higher resistance to cavitation erosion. The slurry erosion resistance of the coatings also improved up to three times depending upon the impingement angle. A significant difference in the erosion mechanism was also observed after post-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Zhao, M. Maurer, F. Fischer, R. Dicks, and E. Lugscheider, Influence of Spray Parameters on the Particle in-Flight Properties and the Properties of HVOF Coating of WC-CoCr, Wear, 2004, 257, p 41-46

    CAS  Google Scholar 

  2. Y. Wu, S. Hong, J. Zhang, Z. He, W. Guo, Q. Wang, and G. Li, Microstructure and Cavitation Erosion Behavior of WC–Co–Cr Coating on 1Cr18Ni9Ti Stainless Steel by HVOF Thermal Spraying, Int. J. Refract Metal Hard Mater., 2012, 32, p 21-26

    Google Scholar 

  3. C.P. Bergmann and J. Vicenzi, Protection Against Erosive Wear Using Thermal Sprayed Cermet: A Review, Protection Against Erosive Wear Using Thermal Sprayed Cermet, Springer, New York, 2011, p 1-77

    Google Scholar 

  4. Q. Wang, Z. Tang, and L. Cha, Cavitation and Sand Slurry Erosion Resistances of WC-10Co-4Cr Coatings, J. Mater. Eng. Perform., 2015, 24, p 2435-2443

    CAS  Google Scholar 

  5. S. Hong, Y. Wu, J. Zhang, Y. Zheng, Y. Qin, W. Gao, and G. Li, Cavitation Erosion Behavior and Mechanism of HVOF Sprayed WC-10Co-4Cr Coating in 3.5 wt% NaCl Solution, Trans. Indian Inst. Met., 2015, 68, p 151-159

    CAS  Google Scholar 

  6. X. Ding, X.-D. Cheng, C. Li, X. Yu, Z.-X. Ding, and C.-Q. Yuan, Microstructure and Performance of Multi-dimensional WC-CoCr Coating Sprayed by HVOF, Int. J. Adv. Manuf. Technol., 2018, 96, p 1-9

    Google Scholar 

  7. K. Lo, F. Cheng, C. Kwok, and H. Man, Improvement of Cavitation Erosion Resistance of AISI, 316 Stainless Steel by Laser Surface Alloying Using Fine WC Powder, Surf. Coat. Technol., 2003, 165, p 258-267

    CAS  Google Scholar 

  8. J. Murthy, D. Rao, and B. Venkataraman, Effect of Grinding on the Erosion Behaviour of a WC–Co–Cr Coating Deposited by HVOF and Detonation Gun Spray Processes, Wear, 2001, 249, p 592-600

    CAS  Google Scholar 

  9. S. Hong, Y. Wu, B. Wang, Y. Zheng, W. Gao, and G. Li, High-Velocity Oxygen-Fuel Spray Parameter Optimization of Nanostructured WC–10Co–4Cr Coatings and Sliding Wear Behavior of the Optimized Coating, Mater. Des., 2014, 55, p 286-291

    CAS  Google Scholar 

  10. J. Murthy and B. Venkataraman, Abrasive Wear Behaviour of WC–CoCr and Cr3C2–20 (NiCr) Deposited by HVOF and Detonation Spray Processes, Surf. Coat. Technol., 2006, 200, p 2642-2652

    CAS  Google Scholar 

  11. S. Bhandari, H. Singh, H. Kumar, and V. Rastogi, Slurry Erosion Performance Study of Detonation Gun-Sprayed WC-10Co-4Cr Coatings on CF8M Steel Under Hydro-Accelerated Conditions, J. Therm. Spray Technol., 2012, 21, p 1054-1064

    CAS  Google Scholar 

  12. S. Cui, Q. Miao, W. Liang, B. Huang, Z. Ding, and B. Chen, Slurry Erosion Behavior of F6NM Stainless Steel and High-Velocity Oxygen Fuel-Sprayed WC-10Co-4Cr Coating, J. Therm. Spray Technol., 2017, 26, p 473-482

    CAS  Google Scholar 

  13. D. Shetty, I. Wright, P. Mincer, and A. Clauer, Indentation Fracture of WC-Co Cermets, J. Mater. Sci., 1985, 20, p 1873-1882

    CAS  Google Scholar 

  14. A. Babu, H. Arora, H. Singh, H. Grewal, Microwave Synthesized Composite Claddings with Enhanced Cavitation Erosion Resistance, Wear, (2019).

  15. D. Guo, F. Li, J. Wang, and J. Sun, Effects of Post-coating Processing on Structure and Erosive Wear Characteristics of Flame and Plasma Spray Coatings, Surf. Coat. Technol., 1995, 73, p 73-78

    CAS  Google Scholar 

  16. C. Huang, X. Yan, W. Li, W. Wang, C. Verdy, M. Planche, H. Liao, and G. Montavon, Post-spray Modification of Cold-Sprayed Ni-Ti Coatings by High-Temperature Vacuum Annealing and Friction Stir Processing, Appl. Surf. Sci., 2018, 451, p 56-66

    CAS  Google Scholar 

  17. G. Xie, X. Lin, K. Wang, X. Mo, D. Zhang, and P. Lin, Corrosion Characteristics of Plasma-Sprayed Ni-Coated WC Coatings Comparison with Different Post-treatment, Corros. Sci., 2007, 49, p 662-671

    CAS  Google Scholar 

  18. F. Wang, G.-N. Luo, J. Huang, and Y. Liu, Properties Improvement of Atmospheric Plasma Sprayed Tungsten Coating by Annealing, surf. coat. technol., 2019, 358, p 276-281

    CAS  Google Scholar 

  19. S. Saeidi, K. Voisey, and D. McCartney, The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings, J. Therm. Spray Technol., 2009, 18, p 209-216

    CAS  Google Scholar 

  20. L. Lelait, S. Alperine, C. Diot, and M. Mevrel, Thermal Barrier Coatings: Microstructural Investigation After Annealing, Mater. Sci. Eng. A, 1989, 120, p 475-482

    Google Scholar 

  21. Y. Yuanzheng, Z. Youlan, L. Zhengyi, and C. Yuzhi, Laser Remelting of Plasma Sprayed Al2O3 Ceramic Coatings and Subsequent Wear Resistance, Mater. Sci. Eng. A, 2000, 291, p 168-172

    Google Scholar 

  22. P. Cheang, K. Khor, L. Teoh, and S. Tam, Pulsed Laser Treatment of Plasma-Sprayed Hydroxyapatite Coatings, Biomaterials, 1996, 17, p 1901-1904

    CAS  Google Scholar 

  23. R.B. Nair, H.S. Arora, P. Mandal, S. Das, H.S. Grewal, High‐Performance Microwave‐Derived Multi‐Principal Element Alloy Coatings for Tribological Application. Adv. Eng. Mater., (2018) 1800163.

    Google Scholar 

  24. R.B. Nair, H. Arora, and H. Grewal, Microwave Synthesized Complex Concentrated Alloy Coatings: Plausible Solution to Cavitation Induced Erosion-Corrosion, Ultrason. Sonochem., 2019, 50, p 114-125

    CAS  Google Scholar 

  25. S. Kaushal, D. Gupta, and H. Bhowmick, On Surface Modification of Austenitic Stainless Steel Using Microwave Processed Ni/Cr3C2 Composite Cladding, Surf. Eng., 2018, 34, p 809-817

    CAS  Google Scholar 

  26. A. Babu, H. Arora, S.N. Behera, M. Sharma, and H. Grewal, Towards Highly Durable Bimodal Composite Claddings Using Microwave Processing, Surf. Coat. Technol., 2018, 349, p 655-666

    CAS  Google Scholar 

  27. C.D. Prasad, S. Joladarashi, M. Ramesh, M. Srinath, and B. Channabasappa, Influence of Microwave Hybrid Heating on the Sliding Wear Behaviour of HVOF Sprayed CoMoCrSi Coating, Mater. Res. Express, 2018, 5, p 086519

    Google Scholar 

  28. C.B. Ponton and R.D. Rawlings, Vickers Indentation Fracture Toughness Test Part 1 Review of Literature and Formulation of Standardised Indentation Toughness Equations, Mater. Sci. Technol., 1989, 5, p 865-872

    Google Scholar 

  29. R. Nair, K. Selvam, H. Arora, S. Mukherjee, H. Singh, and H. Grewal, Slurry Erosion Behavior of High Entropy Alloys, Wear, 2017, 386, p 230-238

    Google Scholar 

  30. H.S. Grewal, S. Bhandari, and H. Singh, Parametric Study of Slurry-Erosion of Hydroturbine Steels with and without Detonation Gun Spray Coatings Using Taguchi Technique, Metall. Mater. Trans. A, 2012, 43, p 3387-3401

    CAS  Google Scholar 

  31. A.S. Kurlov and A.I. Gusev, Tungsten Carbides: Structure, Properties and Application in Hardmetals, Springer, New York, 2013

    Google Scholar 

  32. R.J.K. Wood, B.G. Mellor, and M.L. Binfield, Sand Erosion Performance of Detonation Gun Applied Tungsten Carbide/Cobalt-Chromium Coatings, Wear, 1997, 211, p 70-83

    CAS  Google Scholar 

  33. D. Thakur, B. Ramamoorthy, and L. Vijayaraghavan, Influence of different post treatments on tungsten carbide–cobalt inserts, Mater. Lett., 2008, 62, p 4403-4406

    CAS  Google Scholar 

  34. S. Zafar and A.K. Sharma, Abrasive and Erosive Wear Behaviour of Nanometric WC–12Co Microwave Clads, Wear, 2016, 346, p 29-45

    Google Scholar 

  35. W.N. Sharpe Jr, A. McAleavey, Tensile Properties of LIGA Nickel, Materials and Device Characterization in Micromachining, International Society for Optics and Photonics, 1998, pp. 130-137.

  36. H. Grewal, A. Agrawal, H. Singh, and B.A. Shollock, Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement, J. Therm. Spray Technol., 2014, 23, p 389-401

    CAS  Google Scholar 

  37. Y. Wang, J. Han, H. Wu, B. Yang, and X. Wang, Effect of Sigma Phase Precipitation on the Mechanical and Wear Properties of Z3CN20. 09M Cast Duplex Stainless Steel, Nucl. Eng. Des., 2013, 259, p 1-7

    CAS  Google Scholar 

  38. D. Wheeler and R. Wood, Erosion of Hard Surface Coatings for Use in Offshore Gate Valves, Wear, 2005, 258, p 526-536

    CAS  Google Scholar 

  39. A.V. Levy and W. Buqian, Erosion of Hard Material Coating Systems, Wear, 1988, 121, p 325-346

    CAS  Google Scholar 

  40. I. Hutchings, Wear by Particulates, Chem. Eng. Sci., 1987, 42, p 869-878

    CAS  Google Scholar 

  41. P.H. Shipway and I.M. Hutchings, The Rôle of Particle Properties in the Erosion of Brittle Materials, Wear, 1996, 193, p 105-113

    CAS  Google Scholar 

  42. H. Feller and Y. Kharrazi, Cavitation Erosion of Metals and Alloys, Wear, 1984, 93, p 249-260

    CAS  Google Scholar 

  43. W. Yuping, L. Pinghua, C. Chenglin, W. Zehua, C. Ming, and H. Junhua, Cavitation Erosion Characteristics of a Fe–Cr–Si–B–Mn Coating Fabricated by High Velocity Oxy-Fuel (HVOF) Thermal Spray, Mater. Lett., 2007, 61, p 1867-1872

    Google Scholar 

  44. W. Tomlinson, N. Kalitsounakis, and G. Vekinis, Cavitation Erosion of Aluminas, Ceram. Int., 1999, 25, p 331-338

    CAS  Google Scholar 

  45. C. Jiang, Y. Xing, J. Hao, and X. Song, Effects of Heat-Treatment on Crystallization and Wear Property of Plasma Sprayed Fe-Based Amorphous Coatings, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2013, 28, p 643-646

    CAS  Google Scholar 

  46. G. Liu, Y. An, J. Chen, G. Hou, and J. Chen, Influence of Heat Treatment on Microstructure and Sliding Wear of Thermally Sprayed Fe-Based Metallic Glass Coatings, Tribol. Lett., 2012, 46, p 131-138

    CAS  Google Scholar 

  47. G.J. Li, J. Li, and X. Luo, Effects of High Temperature Treatment on Microstructure and Mechanical Properties of Laser-Clad NiCrBSi/WC Coatings on Titanium Alloy Substrate, Mater. Charact., 2014, 98, p 83-92

    CAS  Google Scholar 

  48. H. Pokhmurska, B. Wielage, T. Lampke, T. Grund, M. Student, and N. Chervinska, Post-treatment of Thermal Spray Coatings on Magnesium, Surf. Coat. Technol., 2008, 202, p 4515-4524

    CAS  Google Scholar 

  49. J. Lin, Z. Wang, P. Lin, J. Cheng, X. Zhang, and S. Hong, Effects of Post Annealing on the Microstructure, Mechanical Properties and Cavitation Erosion Behavior of Arc-sprayed FeNiCrBSiNbW Coatings, Mater. Des., 2015, 65, p 1035-1040

    CAS  Google Scholar 

  50. Z. Zheng, Y. Zheng, W. Sun, and J. Wang, Effect of Heat Treatment on the Structure, Cavitation Erosion and Erosion–Corrosion Behavior of Fe-Based Amorphous Coatings, Tribol. Int., 2015, 90, p 393-403

    CAS  Google Scholar 

Download references

Acknowledgments

H S Grewal thankfully acknowledges the financial assistance provided by the Department of Science and Technology (DST) and Science & Engineering Research Board (SERB), India, under the project title “Microwave Derived Bi-modal Composite Coatings For Encountering Erosion-Related Problems” (File No. ECR/2015/000106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Grewal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, A., Arora, H.S. & Grewal, H.S. Microwave-Assisted Post-processing of Detonation Gun-Sprayed Coatings for Better Slurry and Cavitation Erosion Resistance. J Therm Spray Tech 28, 1565–1578 (2019). https://doi.org/10.1007/s11666-019-00914-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00914-9

Keywords

Navigation