Skip to main content
Log in

Thermal Barrier Coatings—A State of the Art Review

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Thermal barrier coatings (TBCs) have seen considerable advancement since the initial testing and development of thermal spray coating. Thermal barrier coatings are currently been utilized in various engineering areas which include internal combustion engines, gas turbine blades of jet engines, pyrochemical reprocessing units and many more. The development of new materials, deposition techniques is targeted at improving the life of the underlying substrate. Hence, the performance of the coating plays a vital role in improving the life of substrate. The scope for advancement in thermal barrier coatings is very high and continuous efforts are being made to produce improved and durable coatings. Thermal barrier coatings have the potential to address long term and short-term problems in gas turbine, internal combustion and power generation industry. The study of thermal barrier coating material, performance and life estimation is a critical factor that should be understood to introduce any advancement. The present review gives an overview of the thermal spraying techniques and current advancements in materials, mechanical properties, understanding the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Schütze, Fundamentals of high temperature corrosion. Mater. Sci. Technol. A Compr. Treat. (2000). https://doi.org/10.1002/9783527619306.ch2

    Article  Google Scholar 

  2. M.O.T.A. Cruse, S.E. Steward, Thermal barrier coating life prediction model development. J. Eng. Gas Turbines Power. (1991). https://doi.org/10.1115/91-GT-040

    Article  Google Scholar 

  3. A.H. Pakseresht, M. Saremi, H. Omidvar, M. Alizadeh, Micro-structural study and wear resistance of thermal barrier coating reinforced by alumina whisker. Surf. Coat. Technol. 366, 338–348 (2019). https://doi.org/10.1016/j.surfcoat.2019.03.059

    Article  CAS  Google Scholar 

  4. K. Wang, H. Peng, H. Guo, S. Gong, Effect of sintering on thermal conductivity and thermal barrier effects of thermal barrier coatings. Chin. J. Aeronaut. 25, 811–816 (2012). https://doi.org/10.1016/S1000-9361(11)60449-4

    Article  CAS  Google Scholar 

  5. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, Nano-size particle evolution during heat treatment of P91 steel and their effect on micro hardness. Trans. Indian Inst. Met. (2017). https://doi.org/10.1007/s12666-017-1215-6

    Article  Google Scholar 

  6. N. Rana, M.M. Mahapatra, R. Jayaganthan, S. Prakash, High-temperature oxidation and hot corrosion studies on NiCrAlY coatings deposited by flame-spray technique. J. Therm. Spray Technol. 24, 769–777 (2015). https://doi.org/10.1007/s11666-015-0237-z

    Article  CAS  Google Scholar 

  7. J. Sun, Q.G. Fu, R.M. Yuan, K.Y. Dong, J.J. Guo, Corrosion and thermal cycling behavior of plasma sprayed thermal barrier coatings on die steel. Mater. Des. 114, 537–545 (2017). https://doi.org/10.1016/j.matdes.2016.10.065

    Article  CAS  Google Scholar 

  8. S. Mahade, K.P. Jonnalagadda, N. Curry, X.H. Li, S. Björklund, N. Markocsan, P. Nylén, R.L. Peng, Engineered architectures of gadolinium zirconate based thermal barrier coatings subjected to hot corrosion test. Surf. Coat. Technol. 328, 361–370 (2017). https://doi.org/10.1016/j.surfcoat.2017.09.005

    Article  CAS  Google Scholar 

  9. J.A. Haynes, B.A. Pint, K.L. More, Y. Zhang, I.G. Wright, Influence of sulfur, platinum, and hafnium on the oxidation behavior of CVD NiAl bond coatings. Oxid. Met. 58, 513–544 (2002). https://doi.org/10.1023/A:1020525123056

    Article  CAS  Google Scholar 

  10. A.K. Keshri, J. Huang, V. Singh, W. Choi, S. Seal, A. Agarwal, Synthesis of aluminum oxide coating with carbon nanotube reinforcement produced by chemical vapor deposition for improved fracture and wear resistance. Carbon 48, 431–442 (2010). https://doi.org/10.1016/j.carbon.2009.08.046

    Article  CAS  Google Scholar 

  11. K.N. Lee, R.A. Miller, Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics. Surf. Coat. Technol. 86–87, 142–148 (1996). https://doi.org/10.1016/S0257-8972(96)03074-5

    Article  Google Scholar 

  12. R. Eriksson, Thermal Barrier Coatings: Durability Assessment and Life Prediction (Linköping University Electronic Press, 2013)

  13. L. Ma, A. Chen, Z. Zhang, J. Lu, H. He, C. Li, A new fabrication method of uniformly distributed TiO2/CNTs composite film by in situ chemical vapordeposition. Mater. Lett. 96, 203–205 (2013). https://doi.org/10.1016/j.matlet.2013.01.033

    Article  CAS  Google Scholar 

  14. L. Pawolowski, The Science and Engineering of Thermal Spray Coatings, 2nd edn. (Wiley, New York, 2008)

    Book  Google Scholar 

  15. D.J. Varacalle, L.B. Lundberg, R.S. Hartley, J. Walker, I. Falls, Surface Preparation via Grit-Blasting for Thermal Spraying, No. INEL- 94/00136; CONF-9509182-7. (EG and G Idaho, Inc., Idaho Falls, ID, United States, 1995)

  16. Y.X. Kang, Y. Bai, W. Fan, T. Yuan, Y. Gao, C.G. Bao, B.Q. Li, Thermal cycling performance of La2Ce2O7/50 vol.% YSZ composite thermal barrier coating with CMAS corrosion. J. Eur. Ceram. Soc. 38, 2851–2862 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.02.025

    Article  CAS  Google Scholar 

  17. J. R. Davis, Handbook of. Technology, 9(2) (2000)

  18. H. Koivuluoto, P. Vuoristo, Structural analysis of cold-sprayed nickel-based metallic and metallic-ceramic coatings. J. Therm. Spray Technol. 19, 975–989 (2010). https://doi.org/10.1007/s11666-010-9481-4

    Article  CAS  Google Scholar 

  19. T. Hussain, Cold spraying of titanium: a review of bonding mechanisms, microstructure and properties. Key Eng. Mater. 533, 53–90 (2012). https://doi.org/10.4028/www.scientific.net/kem.533.53

    Article  Google Scholar 

  20. Y.Y. Zhang, X.K. Wu, H. Cui, J.S. Zhang, Cold-spray processing of a high density nanocrystalline aluminum alloy 2009 coating using a mixture of as-atomized and as-cryomilled powders. J. Therm. Spray Technol. 20, 1125–1132 (2011). https://doi.org/10.1007/s11666-011-9652-y

    Article  CAS  Google Scholar 

  21. M. Meyer, R. Lupoi, An analysis of the particulate flow in cold spray nozzles. Mech. Sci. 6, 127–136 (2015). https://doi.org/10.5194/ms-6-127-2015

    Article  Google Scholar 

  22. A. List, F. Gärtner, T. Schmidt, T. Klassen, Impact conditions for cold spraying of hard metallic glasses. J. Therm. Spray Technol. 21, 531–540 (2012). https://doi.org/10.1007/s11666-012-9750-5

    Article  CAS  Google Scholar 

  23. Y. Bai, Z.H. Wang, X.B. Li, G.S. Huang, C.X. Li, Y. Li, Corrosion behavior of low pressure cold sprayed Zn–Ni composite coatings. J. Alloys Compd. 719, 194–202 (2017). https://doi.org/10.1016/j.jallcom.2017.05.134

    Article  CAS  Google Scholar 

  24. S. Harsha, D.K. Dwivedi, A. Agrawal, Influence of WC addition in Co–Cr–W–Ni–C flame sprayed coatings on microstructure, microhardness and wear behaviour. Surf. Coat. Technol. 201, 5766–5775 (2007). https://doi.org/10.1016/j.surfcoat.2006.10.026

    Article  CAS  Google Scholar 

  25. M. Walker, Microstructure and bonding mechanisms in cold spray coatings. Mater. Sci. Technol. (United Kingdom) 34, 2057–2077 (2018). https://doi.org/10.1080/02670836.2018.1475444

    Article  CAS  Google Scholar 

  26. S. Kamal, R. Jayaganthan, S. Prakash, S. Kumar, Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 °C. J. Alloys Compd. 463, 358–372 (2008). https://doi.org/10.1016/j.jallcom.2007.09.019

    Article  CAS  Google Scholar 

  27. J.G. Thakare, C. Pandey, R.S. Mulik, M.M. Mahapatra, Microstructure and mechanical properties of D-Gun sprayed Cr3C2–NiCr coating on P91 steel subjected to long term thermal exposure at 650 °C. Mater. Res. Express. 6, 1 (2019). https://doi.org/10.1088/2053-1591/ab5265

    Article  Google Scholar 

  28. O. Racek, The effect of HVOF particle-substrate interactions on local variations in the coating microstructure and the corrosion resistance. J. Therm. Spray Technol. 19, 841–851 (2010). https://doi.org/10.1007/s11666-010-9483-2

    Article  CAS  Google Scholar 

  29. K. Vanevery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, J. Almer, Column formation in suspension plasma-sprayed coatings and resultant thermal properties. J. Therm. Spray Technol. 20, 817–828 (2011). https://doi.org/10.1007/s11666-011-9632-2

    Article  CAS  Google Scholar 

  30. M. Saremi, A. Afrasiabi, A. Kobayashi, Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf. Coat. Technol. 202, 3233–3238 (2008). https://doi.org/10.1016/j.surfcoat.2007.11.029

    Article  CAS  Google Scholar 

  31. P. Bengtsson, T. Johannesson, Characterization of microstructural defects in plasma-sprayed thermal barrier coatings. J. Therm. Spray Technol. 4, 245–251 (1995). https://doi.org/10.1007/BF02646967

    Article  CAS  Google Scholar 

  32. S. Li, Y. An, H. Zhou, J. Chen, Plasma sprayed YSZ coatings deposited at different deposition temperatures, part 1: splats, microstructures, mechanical properties and residual stress. Surf. Coat. Technol. 350, 712–721 (2018). https://doi.org/10.1016/j.surfcoat.2018.07.074

    Article  CAS  Google Scholar 

  33. Muehlberger, Stephan E. (San Clemente, CA) High temperature plasma gun assembly, Patent, United States Electro-Plasma, Inc., Irvine, CA, 5412173, (1995), http://www.freepatentsonline.com/5412173.html

  34. J.E. Jackson, Method for shielding a gas effluent, US Patent for Method of shielding effluents in spray devices Patent (Patent # 7,045,172), (1969)

  35. A.R. Stetson, C.A. Hauck, Plasma spraying techniques for toxic and oxidizable materials. J. Met. 13, 479–480 (1961)

    CAS  Google Scholar 

  36. A. Kulkarni, A. Vaidya, A. Goland, S. Sampath, H. Herman, Processing effects on porosity–property correlations in plasma sprayed yttria-stabilized zirconia coatings. Mater. Sci. Eng. A 359, 100–111 (2003). https://doi.org/10.1016/S0921-5093(03)00342-3

    Article  CAS  Google Scholar 

  37. B.S. Sidhu, S. Prakash, Performance of NiCrAlY, Ni-Cr, Stellite-6 and Ni3Al coatings in Na2SO4–60% V2O5 environment at 900 °C under cyclic conditions. Surf. Coat. Technol. 201, 1643–1654 (2006). https://doi.org/10.1016/j.surfcoat.2006.02.035

    Article  CAS  Google Scholar 

  38. J.G. Thakare, R.S. Mulik, M.M. Mahapatra, R. Upadhyaya, Hot corrosion behavior of plasma sprayed 8YSZ-alumina-CNT composite coating in Na2SO4–60% V2O5 molten salt environment. Ceram. Int. 44, 21533–21545 (2018). https://doi.org/10.1016/j.ceramint.2018.08.217

    Article  CAS  Google Scholar 

  39. X. Wang, L. Guo, H. Peng, L. Zheng, H. Guo, S. Gong, Hot-corrosion behavior of a La2Ce2O7/YSZ thermal barrier coating exposed to Na2SO4 + V2O5 or V2O5 salt at 900 °C. Ceram. Int. 41, 6604–6609 (2015). https://doi.org/10.1016/j.ceramint.2015.01.107

    Article  CAS  Google Scholar 

  40. M. Movchan, Y. Rudoy, Composition, structure and properties of gradient thermal barrier coatings (TBCs) produced by electron beam physical vapor deposition (EB–PVD). Mater. Des. 19, 253–258 (1998)

    Article  CAS  Google Scholar 

  41. J.R. Nicholls, M.J. Deakin, D.S. Rickerby, A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings. Wear (1999). https://doi.org/10.1016/S0043-1648(99)00214-8

    Article  Google Scholar 

  42. P.S. Anderson, X. Wang, P. Xiao, Effect of isothermal heat treatment on plasma-sprayed yttria-stabilized zirconia studied by impedance spectroscopy. J. Am. Ceram. Soc. 88, 324–330 (2005). https://doi.org/10.1111/j.1551-2916.2005.00088.x

    Article  CAS  Google Scholar 

  43. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, H. Herman, Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta Mater. 51, 5319–5334 (2003). https://doi.org/10.1016/S1359-6454(03)00390-2

    Article  CAS  Google Scholar 

  44. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 205, 938–942 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.151

    Article  CAS  Google Scholar 

  45. D. Liu, C. Rinaldi, P.E.J. Flewitt, Effect of substrate curvature on the evolution of microstructure and residual stresses in EBPVD-TBC. J. Eur. Ceram. Soc. 35, 2563–2575 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.02.024

    Article  CAS  Google Scholar 

  46. G. Shanmugavelayutham, A. Kobayashi, Mechanical properties and oxidation behaviour of plasma sprayed functionally graded zirconia–alumina thermal barrier coatings. Mater. Chem. Phys. 103, 283–289 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.066

    Article  CAS  Google Scholar 

  47. J.G. Thakare, C. Pandey, R.S. Mulik, M.M. Mahapatra, Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram. Int. 44, 6980–6989 (2018). https://doi.org/10.1016/j.ceramint.2018.01.131

    Article  CAS  Google Scholar 

  48. G. Montavon, S. Sampath, C.C. Berndt, C. Coddet, Effects of vacuum plasma spray processing parameters on splat. Morphology 4, 5–6 (1995)

    Google Scholar 

  49. M.H. Foroushani, M. Shamanian, M. Salehi, F. Davar, Porosity analysis and oxidation behavior of plasma sprayed YSZ and YSZ/LaPO4 abradable thermal barrier coatings. Ceram. Int. 42, 15868–15875 (2016). https://doi.org/10.1016/j.ceramint.2016.07.057

    Article  CAS  Google Scholar 

  50. M.R. Rokni, S.R. Nutt, C.A. Widener, V.K. Champagne, R.H. Hrabe, Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. J. Therm. Spray Technol. 26, 1308–1355 (2017). https://doi.org/10.1007/s11666-017-0575-0

    Article  Google Scholar 

  51. P. Fauchais, G. Montavon, M. Vardelle, J. Cedelle, Developments in direct current plasma spraying 201, 1908–1921 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.033

    Article  CAS  Google Scholar 

  52. S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, A. Vaidya, Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study of Ni-5 wt% Al bond coats. Mater. Sci. Eng. A. 364, 216–231 (2004). https://doi.org/10.1016/j.msea.2003.08.023

    Article  CAS  Google Scholar 

  53. S.R. Choi, Mechanical Properties of Plasma-Sprayed ZrO2–8wt% Y2O3 Thermal Barrier Coatings (Glenn Research Center, Cleveland, 2004)

    Book  Google Scholar 

  54. A. Afrasiabi, M. Saremi, A. Kobayashi, A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3. Mater. Sci. Eng. A 478, 264–269 (2008). https://doi.org/10.1016/j.msea.2007.06.001

    Article  CAS  Google Scholar 

  55. U. Saral, N. Toplan, Thermal cycle properties of plasma sprayed YSZ/Al2O3 thermal barrier coatings. Surf. Eng. 25, 541–547 (2009). https://doi.org/10.1179/026708408X343591

    Article  CAS  Google Scholar 

  56. G.F. Ribas, D.C. Padró, L.M.L. Pitarch, M.A. Gomila, Thermal shock resistance of Y-TZP with Palmqvist craks. J. Eur. Ceram. Soc. 23, 107–114 (2003). https://doi.org/10.1016/S0955-2219(02)00065-1

    Article  Google Scholar 

  57. B. Choules, K. Kokini, T. Taylor, Thermal fracture of thermal barrier coatings in a high heat flux environment. Surf. Coat. Technol. 106, 23–29 (1998). https://doi.org/10.1016/S0257-8972(98)00485-X

    Article  CAS  Google Scholar 

  58. G. Sreedhar, V.S. Raja, Hot corrosion of YSZ/Al2O3 dispersed NiCrAlY plasma-sprayed coatings in Na2SO4-10 wt% NaCl melt. Corros. Sci. 52, 2592–2602 (2010). https://doi.org/10.1016/j.corsci.2010.04.007

    Article  CAS  Google Scholar 

  59. S. Mohsen, A. Abbas, K. Akira, Bond coat oxidation and hot corrosion behavior of plasma sprayed YSZ coating on Ni superalloy †. Trans. JWRI. 36, 41–45 (2007)

    Google Scholar 

  60. P. Jana, P.S. Jayan, S. Mandal, K. Biswas, Hot corrosion behaviour of rare-earth magnesium hexaaluminate based thermal barrier coatings under molten sulphate-vanadate salts. Surf. Coat. Technol. 322, 108–119 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.038

    Article  CAS  Google Scholar 

  61. M.P. Schmitt, A.K. Rai, R. Bhattacharya, D. Zhu, D.E. Wolfe, Multilayer thermal barrier coating (TBC) architectures utilizing rare earth doped YSZ and rare earth pyrochlores. Surf. Coat. Technol. 251, 56–63 (2014). https://doi.org/10.1016/j.surfcoat.2014.03.049

    Article  CAS  Google Scholar 

  62. K.M. Doleker, A.C. Karaoglanli, Comparison of oxidation behavior of YSZ and Gd2Zr2O7 thermal barrier coatings (TBCs). Surf. Coat. Technol. 318, 198–207 (2017). https://doi.org/10.1016/j.surfcoat.2016.12.078

    Article  CAS  Google Scholar 

  63. J. Xia, L. Yang, R.T. Wu, Y.C. Zhou, L. Zhang, B.B. Yin, Y.G. Wei, On the resistance of rare earth oxide-doped YSZ to high temperature volcanic ash attack. Surf. Coat. Technol. 307, 534–541 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.033

    Article  CAS  Google Scholar 

  64. M. Saremi, A. Keyvani, M. Heydarzadeh Sohi, Hot corrosion resistance and mechanical behavior of atmospheric plasma sprayed conventional and nanostructured zirconia coatings. Int. J. Mod. Phys. Conf. Ser. 05, 720–727 (2012). https://doi.org/10.1142/S201019451200267X

    Article  CAS  Google Scholar 

  65. T.A. Taylor, Thermal properties and microstructure of two thermal barrier coatings. Surf. Coat. Technol. 54–55, 53–57 (1992). https://doi.org/10.1016/S0257-8972(09)90027-5

    Article  Google Scholar 

  66. T.A. Taylor, D.L. Appleby, A.E. Weatherill, J. Griffiths, Plasma-sprayed yttria-stabilized zirconia coatings: structure-property relationships. Surf. Coat. Technol. 43–44, 470–480 (1990). https://doi.org/10.1016/0257-8972(90)90098-W

    Article  Google Scholar 

  67. X. Zhou, J. Wang, J. Yuan, J. Sun, S. Dong, L. He, X. Cao, Calcium–magnesium–alumino–silicate induced degradation and failure of La2(Zr0.7Ce0.3)2O7/YSZ double-ceramic–layer thermal barrier coatings prepared by electron beam-physical vapor deposition. J. Eur. Ceram. Soc. 38, 1897–1907 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.057

    Article  CAS  Google Scholar 

  68. J.A. Thompson, Zirconia top coats in plasma-sprayed TBCs. Acta Mater. 49, 1565–1575 (2001)

    Article  CAS  Google Scholar 

  69. A.K. Ray, R.W. Steinbrech, Crack propagation studies of thermal barrier coatings under bending. J. Eur. Ceram. Soc. 19, 2097–2109 (1999)

    Article  CAS  Google Scholar 

  70. J.H. Kim, M.C. Kim, C.G. Park, Effects of Defects on the Thermal Fatigue Behavior of Detonation-Gun Sprayed Thermal Barrier Coatings, 7 (2001)

  71. J.S. Wallace, J. Ilavsky, J.S. Wallace, J. Ilavsky, C. Division, Plasma Sprayed Deposits. J. Ther. Spray Technol. 7, 521–526 (1998)

    Article  CAS  Google Scholar 

  72. I. Zaplatynsky, Performance of laser-glazed zirconia thermal barrier coatings in cyclic oxidation and corrosion burner rig tests. Thin Solid Films 95, 275–284 (1982). https://doi.org/10.1016/0040-6090(82)90020-7

    Article  CAS  Google Scholar 

  73. H. Kim, Y. Kweon, Elastic modulus of plasma-sprayed coatings determined by indentation and bend tests. Thin Solid Films 342, 201–206 (1999)

    Article  CAS  Google Scholar 

  74. D. Schwingel, R. Taylor, T. Haubold, J. Wigren, C. Gualco, Mechanical and thermophysical properties of thick PYSZ thermal barrier coatings: correlation with microstructure and spraying parameters. Surf. Coat. Technol. 109, 99–106 (1998)

    Article  Google Scholar 

  75. A.W.L.S. Cook, Temperature dependence of dynamic Young’ s modulus and internal friction in LPPS NiCrAIY. J. Mater. Sci. 29, 5104–5108 (1994)

    Article  CAS  Google Scholar 

  76. A.M. Karlsson, T. Xu, A.G. Evans, The effect of the thermal barrier coating on the displacement instability in thermal barrier systems. Acta Meter 50, 1211–1218 (2002)

    Article  CAS  Google Scholar 

  77. M. Jinnestrand, H. Brodin, Crack initiation and propagation in air plasma sprayed thermal barrier coatings, testing and mathematical modelling of low cycle fatigue behaviour. Mater. Sci. Eng. A 379, 45–57 (2004). https://doi.org/10.1016/j.msea.2003.12.063

    Article  CAS  Google Scholar 

  78. K.N. Lee, Current status of environmental barrier coatings for Si-based ceramics. Surf. Coat. Technol. 133–134, 1–7 (2000). https://doi.org/10.1016/S0257-8972(00)00889-6

    Article  Google Scholar 

  79. R.A. Miller, History of Thermal Barrier Coatings for Gas Turbine Engines, (2009)

  80. B.S. Sidhu, S. Prakash, Studies on the behaviour of stellite-6 as plasma sprayed and laser remelted coatings in molten salt environment at 900 °C under cyclic conditions. J. Mater. Process. Technol. 172, 52–63 (2006)

    Article  CAS  Google Scholar 

  81. M. Belmonte, Advanced ceramic materials for high temperature applications. Adv. Eng. Mater. 8, 693–703 (2006). https://doi.org/10.1002/adem.200500269

    Article  CAS  Google Scholar 

  82. K. Jiang, S. Liu, X. Wang, Phase stability and thermal conductivity of nanostructured tetragonal yttria–stabilized zirconia thermal barrier coatings deposited by air–plasma spraying. Ceram. Int. 43, 12633–12640 (2017). https://doi.org/10.1016/j.ceramint.2017.06.142

    Article  CAS  Google Scholar 

  83. S. Mahade, N. Curry, S. Björklund, N. Markocsan, P. Nylén, Engineered thermal barrier coatings deposited by suspension plasma spray. Mater. Lett. 209, 517–521 (2017). https://doi.org/10.1016/j.matlet.2017.08.096

    Article  CAS  Google Scholar 

  84. B.T. Richards, H.N.G. Wadley, Plasma spray deposition of tri-layer environmental barrier coatings. J. Eur. Ceram. Soc. 34, 3069–3083 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.027

    Article  CAS  Google Scholar 

  85. B. Xu, C. Hong, S. Zhou, J. Han, X. Zhang, High-temperature erosion resistance of ZrB2—based ceramic coating for lightweight carbon/carbon composites under simulated atmospheric re-entry conditions by high frequency plasma wind tunnel test Outer-layered coating SiC whisker CBCFs (d). Ceram. Int. 42, 9511–9518 (2016). https://doi.org/10.1016/j.ceramint.2016.03.029

    Article  CAS  Google Scholar 

  86. X. Chen, Y. Zhao, L. Gu, B. Zou, Y. Wang, X. Cao, Hot corrosion behaviour of plasma sprayed YSZ/LaMgAl 11O19 composite coatings in molten sulfate—vanadate salt. Corros. Sci. 53, 2335–2343 (2011). https://doi.org/10.1016/j.corsci.2011.03.019

    Article  CAS  Google Scholar 

  87. G. Di Girolamo, C. Blasi, M. Schioppa, L. Tapfer, Structure and thermal properties of heat treated plasma sprayed ceria-yttria co-stabilized zirconia coatings. Ceram. Int. 36, 961–968 (2010). https://doi.org/10.1016/j.ceramint.2009.10.020

    Article  CAS  Google Scholar 

  88. B.R. Marple, J. Voyer, M. Thibodeau, D.R. Nagy, Hot corrosion of lanthanum zirconate and partially stabilized zirconia thermal barrier coatings. J. Eng. Gas Turbines Power 128, 1 (2019). https://doi.org/10.1115/1.1924534

    Article  CAS  Google Scholar 

  89. A. Keyvani, M. Saremi, M.H. Sohi, Surface and coatings technology an investigation on oxidation, hot corrosion and mechanical properties of plasma-sprayed conventional and nanostructured YSZ coatings. Surf. Coat. Technol. 206, 208–216 (2011). https://doi.org/10.1016/j.surfcoat.2011.06.036

    Article  CAS  Google Scholar 

  90. H. Jamali, R. Mozafarinia, R.S. Razavi, R. Ahmadi-pidani, Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 38, 6705–6712 (2012). https://doi.org/10.1016/j.ceramint.2012.05.060

    Article  CAS  Google Scholar 

  91. B. Liang, H. Liao, C. Ding, C. Coddet, Nanostructured zirconia-30 vol.% alumina composite coatings deposited by atmospheric plasma spraying. Thin Solid Films. 484, 225–231 (2005). https://doi.org/10.1016/j.tsf.2005.02.040

    Article  CAS  Google Scholar 

  92. F. Yu, D. Gu, Y. Zheng, Y. Luo, X. Li, H. Chen, L. Guo, Influence of MoO3on boron aluminosilicate glass-ceramic coating for enhancing titanium high-temperature oxidation resistance. J. Alloys Compd. 729, 453–462 (2017). https://doi.org/10.1016/j.jallcom.2017.09.189

    Article  CAS  Google Scholar 

  93. R.C. Hendricks, Residual stress in plasma sprayed ceramic turbine tip and gas path seal specimen, (n.d.)

  94. C.-C. Chiu, Determination of the elastic modulus and residual stresses in ceramic coatings using a strain gage. J. Am. Ceram. Soc. 73, 1999–2005 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05258.x

    Article  CAS  Google Scholar 

  95. C.O. Ruud, C.P. Gazzara, Residual stress measurements in alumina and silicon carbide. J. Am. Ceram. Soc. 68, 67–68 (1985)

    Article  Google Scholar 

  96. O.B. Soroka, Evaluation of residual stresses in PVD-coatings. Part 1 Rev. 42, 287–296 (2010)

    CAS  Google Scholar 

  97. S. Kuroda, Generation mechanisms of residual stresses in plasma-sprayed coatings. Vacuum 41, 1297–1299 (1990)

    Article  CAS  Google Scholar 

  98. S. Kuroda, The quinching stress in thermal sprayed coating. Thin solid films 200, 2–3 (1991)

    Article  Google Scholar 

  99. A. Bhattacharyya, D. Maurice, Mechanics of Materials Residual stresses in functionally graded thermal barrier coatings. Mech. Mater. 129, 50–56 (2019). https://doi.org/10.1016/j.mechmat.2018.11.002

    Article  Google Scholar 

  100. Y.Y. Santana, J.G. La Barbera-Sosa, M.H. Staia, J. Lesage, E.S. Puchi-Cabrera, D. Chicot, E. Bemporad, Measurement of residual stress in thermal spray coatings by the incremental hole drilling method. Surf. Coat. Technol. 201, 2092–2098 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.056

    Article  CAS  Google Scholar 

  101. A.F.M. Arif, K.S. Al-athel, K. Fahd, S. Arabia, Residual Stresses in Thermal Spray Coating (Elsevier Ltd., Amsterdam, 2017). https://doi.org/10.1016/B978-0-12-803581-8.09199-2

    Book  Google Scholar 

  102. S. Kuroda, T. Fukushima, S. Kitahara, Simultaneous measurement of coating thickness and deposition stress during thermal spraying. Thin Solid Films 164, 157–163 (1988). https://doi.org/10.1016/0040-6090(88)90127-7

    Article  Google Scholar 

  103. R. Ahmed, M.E. Fitzpatrick, N.H. Faisal, Surface & Coatings Technology A comparison of neutron diffraction and hole-drilling residual strain measurements in thermally sprayed coatings. Surf. Coat. Technol. 206, 4180–4185 (2012). https://doi.org/10.1016/j.surfcoat.2012.04.018

    Article  CAS  Google Scholar 

  104. J.H. Dautzenberg, R.O.E. Vijigen, Mechanical measurement of residual stress in thin PVD films. Thin Solid Films. 270, 264–269 (1995)

    Article  Google Scholar 

  105. Y.Y. Santana, P.O. Renault, M. Sebastiani, J.G. La Barbera, J. Lesage, E. Bemporad, Characterization and residual stresses of WC–Co thermally sprayed coatings. Surf. Coat. Technol. 202, 4560–4565 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.042

    Article  CAS  Google Scholar 

  106. D.J. Greying, E.F. Rybicki, J.R. Shadley, Through-thickness residual stress evaluations for several industrial thermal spray coatings using a modified. J. Therm. Spray Technol. 3, 379–388 (1994)

    Article  Google Scholar 

  107. O. Kesler, M. Finot, Determination of processing induced stresses and properties of layeres and graded coatings: experimental method and reuslts of plasma sprayed Ni-Al2O3, Acta Mater. 45 (1997)

  108. Y. Song, Q.Z. Fang, T.J. Wang, Experimental investigation of residual thermal stress in thermal barrier coating (TBC), in: Key Engineering Materials, (2011), pp. 295–300. https://doi.org/10.4028/www.scientific.net/KEM.462-463.295

  109. M. Buchmann, R. Gadow, J. Tabellion, Experimental and numerical residual stress analysis of layer coated composites. Mater. Sci. Eng. A 288, 154–159 (2000)

    Article  Google Scholar 

  110. X. Zhang, M. Watanabe, S. Kuroda, Effects of residual stress on the mechanical properties of plasma-sprayed thermal barrier coatings. Eng. Fract. Mech. 110, 314–327 (2013). https://doi.org/10.1016/j.engfracmech.2013.08.016

    Article  Google Scholar 

  111. A.M. Limarga, S. Widjaja, T. Hon, Mechanical properties and oxidation resistance of plasma-sprayed multilayered Al2O3/ZrO2 thermal barrier coatings. Surf. Coat. Technol. 197, 93–102 (2005). https://doi.org/10.1016/j.surfcoat.2005.02.087

    Article  CAS  Google Scholar 

  112. K. Hirano, Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1700 °C. J. Eur. Ceram. Soc. 25, 1191–1199 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.01.003

    Article  CAS  Google Scholar 

  113. K. Ogawa, T. Shoji, H. Aoki, N. Fujita, T. Torigoe, Mechanistic understanding for degraded thermal barrier coatings. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 44, 507–513 (2001). https://doi.org/10.1299/jsmea.44.507

    Article  Google Scholar 

  114. S.M. Meier, D.K. Gupta, The evolution of thermal barrier coatings in gas turbine engine applications. J. Eng. Gas Turbines Power 116, 250–257 (1994). https://doi.org/10.1115/1.2906801

    Article  CAS  Google Scholar 

  115. G.W. Goward, Protective coatings—purpose, role, and design. Mater. Sci. Technol. 2, 194–200 (1986). https://doi.org/10.1179/mst.1986.2.3.194

    Article  CAS  Google Scholar 

  116. S. Bose, High Temperature Coatings (Butterworth-Heinemann, Oxford, 2007). https://doi.org/10.1016/B978-0-7506-8252-7.X5000-8

    Book  Google Scholar 

  117. H.M. Tawancy, N. Sridhar, B.S. Tawabini, N.M. Abbas, T.N. Rhys-Jones, Thermal stability of a platinum aluminide coating on nickel-based superalloys. J. Mater. Sci. 27, 6463–6474 (1992). https://doi.org/10.1007/BF00576299

    Article  CAS  Google Scholar 

  118. B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, K. Prüßner, K.B. Alexander, Substrate and bond coat compositions: factors affecting alumina scale adhesion. Mater. Sci. Eng., A 245, 201–211 (1998). https://doi.org/10.1016/S0921-5093(97)00851-4

    Article  Google Scholar 

  119. R. Lowrie, D.H. Boone, Composite coatings of CoCrAlY plus platinum. Thin Solid Films 45, 491–498 (1977). https://doi.org/10.1016/0040-6090(77)90236-X

    Article  CAS  Google Scholar 

  120. H.E. Evans, Stress effects in high temperature oxidation of metals. Int. Mater. Rev. 40, 1–40 (1995). https://doi.org/10.1179/imr.1995.40.1.1

    Article  CAS  Google Scholar 

  121. R.A. Rapp, Y.-S. Zhang, Hot corrosion of materials: fundamental studies. JOM 46, 47–55 (1994). https://doi.org/10.1007/BF03222665

    Article  CAS  Google Scholar 

  122. N. Eliaz, G. Shemesh, R.M. Latanision, Hot corrosion in gas turbine components. Eng. Fail. Anal. 9, 31–43 (2002). https://doi.org/10.1016/S1350-6307(00)00035-2

    Article  CAS  Google Scholar 

  123. R. Rajendran, Gas turbine coatings—an overview. Eng. Fail. Anal. 26, 355–369 (2012)

    Article  CAS  Google Scholar 

  124. P.J. Ennis, A. Czyrska-Filemonowicz, Recent advances in creep-resistant steels for power plant applications. Sadhana. 28, 709–730 (2003). https://doi.org/10.1007/BF02706455

    Article  CAS  Google Scholar 

  125. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, R.S. Vidyarthy, H.K. Narang, A brief study on δ-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties. Arch. Civ. Mech. Eng. 18, 713–722 (2018). https://doi.org/10.1016/j.acme.2017.12.002

    Article  Google Scholar 

  126. C. Pandey, A. Giri, M.M. Mahapatra, Effect of normalizing temperature on microstructural stability and mechanical properties of creep strength enhanced ferritic P91 steel. Mater. Sci. Eng. A 657, 173–184 (2016). https://doi.org/10.1016/j.msea.2016.01.066

    Article  CAS  Google Scholar 

  127. T.S. Sidhu, R.D. Agrawal, S. Prakash, Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review. Surf. Coat. Technol. 198, 441–446 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.056

    Article  CAS  Google Scholar 

  128. F. Presuel-Moreno, M.A. Jakab, N. Tailleart, M. Goldman, J.R. Scully, Corrosion-resistant metallic coatings. Mater. Today 11, 14–23 (2008). https://doi.org/10.1016/S1369-7021(08)70203-7

    Article  CAS  Google Scholar 

  129. B.R. Marple, J. Voyer, M. Thibodeau, D.R. Nagy, R. Vassen, Hot corrosion of lanthanum zirconate and partially stabilized zirconia thermal barrier coatings. J. Eng. Gas Turbines Power 128, 144 (2006). https://doi.org/10.1115/1.1924534

    Article  CAS  Google Scholar 

  130. J. Sun, Q.-G. Fu, R.-M. Yuan, K.-Y. Dong, J.-J. Guo, Corrosion and thermal cycling behavior of plasma sprayed thermal barrier coatings on die steel. Mater. Des. 114, 537–545 (2016). https://doi.org/10.1016/j.matdes.2016.10.065

    Article  CAS  Google Scholar 

  131. M.R. Loghman-Estarki, R.S. Razavi, H. Edris, S.R. Bakhshi, M. Nejati, H. Jamali, Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings in the presence of molten sulfate and vanadate salt. Ceram. Int. 42, 7432–7439 (2016). https://doi.org/10.1016/j.ceramint.2016.01.147

    Article  CAS  Google Scholar 

  132. D.R. Clarke, S.R. Phillpot, Thermal barrier coating materials. Mater. Today 8, 22–29 (2005). https://doi.org/10.1016/S1369-7021(05)70934-2

    Article  CAS  Google Scholar 

  133. R.L. Jones, Some aspects of the hot corrosion of thermal barrier coatings. J. Therm. Spray Technol. 6, 77–84 (1997). https://doi.org/10.1007/BF02646315

    Article  CAS  Google Scholar 

  134. R. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia, H. Jamali, Evaluation of hot corrosion behavior of plasma sprayed ceria and yttria stabilized zirconia thermal barrier coatings in the presence of Na2SO4V2O5 molten salt. Ceram. Int. 38, 6613–6620 (2012). https://doi.org/10.1016/j.ceramint.2012.05.047

    Article  CAS  Google Scholar 

  135. S.M. Jiang, X. Peng, Z.B. Bao, S.C. Liu, Q.M. Wang, J. Gong, C. Sun, Preparation and hot corrosion behaviour of a MCrAlY + AlSiY composite coating. Corros. Sci. 50, 3213–3220 (2008). https://doi.org/10.1016/j.corsci.2008.08.018

    Article  CAS  Google Scholar 

  136. P. Mohan, B. Yuan, T. Patterson, V.H. Desai, Y.H. Sohn, Degradation of yttria-stabilized zirconia thermal barrier coatings by vanadium pentoxide, phosphorous pentoxide, and sodium sulfate. J. Am. Ceram. Soc. 90, 3601–3607 (2007). https://doi.org/10.1111/j.1551-2916.2007.01941.x

    Article  CAS  Google Scholar 

  137. N.P. Padture, Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002). https://doi.org/10.1126/science.1068609

    Article  CAS  Google Scholar 

  138. L. Guo, C. Zhang, M. Li, W. Sun, Z. Zhang, F. Ye, Hot corrosion evaluation of Gd2O3–Yb2O3 Co-doped Y2O3 stabilized ZrO2 thermal barrier oxides exposed to Na2SO4 + V2O5 molten salt. Ceram. Int. 43, 2780–2785 (2017). https://doi.org/10.1016/j.ceramint.2016.11.109

    Article  CAS  Google Scholar 

  139. M. Mohammadi, A. Kobayashi, S. Javadpour, S.A.J. Jahromi, Evaluation of hot corrosion behaviors of Al2O3–YSZ composite TBC on gradient MCrAlY coatings in the presence of Na2SO4–NaVO3 salt. Vacuum 167, 547–553 (2019). https://doi.org/10.1016/j.vacuum.2018.04.042

    Article  CAS  Google Scholar 

  140. J. Pokluda, M. Kianicov, Damage and performance assessment of protective coatings on turbine blades. Gas Turbines. (2012). https://doi.org/10.5772/10214

    Article  Google Scholar 

  141. N. Wu, Z. Chen, S.X. Mao, Hot corrosion mechanism of composite alumina/yttria-stabilized zirconia coating in molten sulfate-vanadate salt. J. Am. Ceram. Soc. 88, 675–682 (2005). https://doi.org/10.1111/j.1551-2916.2005.00120.x

    Article  CAS  Google Scholar 

  142. J. Kim, M.G. Dunn, A.J. Baran, D.P. Wade, E.L. Tremba, Deposition of volcanic materials in the hot sections of two gas turbine engines. J. Eng. Gas Turbines Power 115, 641 (1993). https://doi.org/10.1115/1.2906754

    Article  CAS  Google Scholar 

  143. B.R. Marple, J. Voyer, M. Thibodeau, D.R. Nagy, R. Vassen, Hot corrosion of lanthanum zirconate and partially stabilized zirconia thermal barrier coatings. J. Eng. Gas Turbines Power 128, 144 (2005). https://doi.org/10.1115/1.1924534

    Article  CAS  Google Scholar 

  144. M.J. Pindera, J. Aboudi, S.M. Arnold, The effect of interface roughness and oxide film thickness on the inelastic response of thermal barrier coatings to thermal cycling. Mater. Sci. Eng. A 284, 158–175 (2000). https://doi.org/10.1016/S0921-5093(00)00750-4

    Article  Google Scholar 

  145. M.Y. Ali, S.Q. Nusier, G.M. Newaz, Mechanics of damage initiation and growth in a TBC/superalloy system. Int. J. Solids Struct. 38, 3329–3340 (2001). https://doi.org/10.1016/S0020-7683(00)00261-4

    Article  Google Scholar 

  146. V.K. Tolpygo, D.R. Clarke, K.S. Murphy, Evaluation of interface degradation during cyclic oxidation of EB–PVD thermal barrier coatings and correlation with TGO luminescence. Surf. Coat. Technol. 188–189, 62–70 (2004). https://doi.org/10.1016/j.surfcoat.2004.08.001

    Article  CAS  Google Scholar 

  147. M.H. Li, Z.Y. Zhang, X.F. Sun, H.R. Guan, W.Y. Hu, Z.Q. Hu, Oxidation and Degradation of EB–PVD Thermal-Barrier Coatings. Oxid. Metals 58, 499–512 (2002)

    Article  CAS  Google Scholar 

  148. A.G. Evans, D.R. Clarke, C.G. Levi, The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc. 28, 1405–1419 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.023

    Article  CAS  Google Scholar 

  149. H. Guo, L. Sun, H. Li, S. Gong, High temperature oxidation behavior of hafnium modified NiAl bond coat in EB–PVD thermal barrier coating system. Thin Solid Films 516, 5732–5735 (2008). https://doi.org/10.1016/j.tsf.2007.07.031

    Article  CAS  Google Scholar 

  150. T.S. Sidhu, S. Prakash, R.D. Agrawal, Hot corrosion and performance of nickel-based coatings. Curr. Sci. 90, 41–47 (2006)

    CAS  Google Scholar 

  151. G.W. Goward, Low-temperature hot corrosion in gas turbines: a review of causes and coatings therefor. J. Eng. Gas Turbines Power 108, 421–425 (1986). https://doi.org/10.1115/1.3239921

    Article  CAS  Google Scholar 

  152. A. Drummond, E.D. Alves, Perfil socioeconômico e demográfico e a capacidade funcional de idosos atendidos pela Estratégia Saúde da Família de Paranoá, Distrito Federal. Rev. Bras. Geriatr. e Gerontol. 16, 727–738 (2013). https://doi.org/10.1590/s1809-98232013000400007

    Article  Google Scholar 

  153. J.A. Goebel, F.S. Pettit, G.W. Goward, Mechanisms for the hot corrosion of nickel-base alloys. Metall. Trans. 4, 261–278 (1973). https://doi.org/10.1007/BF02649626

    Article  CAS  Google Scholar 

  154. C. Leyens, I.G. Wright, B.A. Pint, Hot corrosion of an EB–PVD thermal-barrier coating system at 950 °C. Oxid. Met. 54, 401–424 (2000). https://doi.org/10.1023/A:1004634400479

    Article  CAS  Google Scholar 

  155. C. Leyenp, U. Schulz, B.A. Pint, I.G. Wright, Influence of EB–PVD TBC microstructure on thermal barrier coating system performance under cyclic oxidation conditions. Surf. Coat. Technol. 120, 68–76 (1999)

    Google Scholar 

  156. M.P. Borom, C.A. Johnson, L.A. Peluso, Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf. Coatings Technol. 86–87, 116–126 (1996). https://doi.org/10.1016/S0257-8972(96)02994-5

    Article  Google Scholar 

  157. W.N. Harrison, D.G. Moore, J.C. Richmond, Review of an investigation of ceramic coatings for metallic turbine parts and other high-temperature applications (1947)

  158. F.B. Garrett, C.A. Gyorgak, Adhesive and Protective Characteristics of Ceramic Coating A-417 and Its Effect on Engine Life of Forged Refractaloy- 26 (AMS 5760) and Cast Stellite 21 (AMS 5385) Turbine Blades (1953)

  159. P.E. Hodge, R.A. Miller, M.A. Gedwill, Evaluation of the hot corrosion behavior of thermal barrier coatings. Thin Solid Films 73, 447–453 (1980). https://doi.org/10.1016/0040-6090(80)90513-1

    Article  CAS  Google Scholar 

  160. S. Stecura, Two-Layer Thermal Barrier Coating for Turbine Engine Airfoils—Furnace and Burner Rig Test Results, NASA/TM-x-2425. (1976) 1–17

  161. C.H. Liebert, F.S. Stepka, Memorandum Nasa Tm X-3352 Potential Use of Ceramic Coating As a Thermal Insulation on Cooled Turbine Hardware, Report. (1976)

  162. S.M. Meier, D.M. Nissley, K.D. Sheffler, T.A. Cruse, Thermal barrier coating life prediction model development, Nasa Technical report, Report/Patent Number: NASA-CR-182230, NAS 1.26:182230, PWA-5970-40, Document Id: 19900004072, Accession Number: 90N13388, (1989)

  163. F. Traeger, M. Ahrens, R. Vaßen, D. Stöver, A life time model for ceramic thermal barrier coatings. Mater. Sci. Eng. A 358, 255–265 (2003). https://doi.org/10.1016/S0921-5093(03)00300-9

    Article  CAS  Google Scholar 

  164. L. Ni, C. Liu, C. Zhou, A Life Prediction Model of Thermal Barrier Coatings. Int. J. Mod. Phys. B 24, 3161–3166 (2010). https://doi.org/10.1142/s0217979210066252

    Article  CAS  Google Scholar 

  165. H. Song, Y. Kim, J.M. Lee, J. Yun, D.J. Kim, J.M. Koo, C.S. Seok, Life prediction of thermal barrier coating considering degradation and thermal fatigue. Int. J. Precis. Eng. Manuf. 17, 241–245 (2016). https://doi.org/10.1007/s12541-016-0031-y

    Article  Google Scholar 

  166. S. Wei, W. Fu-chi, F. Qun-bo, M. Zhuang, Lifetime prediction of plasma-sprayed thermal barrier coating systems. Surf. Coat. Technol. 217, 39–45 (2013). https://doi.org/10.1016/j.surfcoat.2012.11.069

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakare, J.G., Pandey, C., Mahapatra, M.M. et al. Thermal Barrier Coatings—A State of the Art Review. Met. Mater. Int. 27, 1947–1968 (2021). https://doi.org/10.1007/s12540-020-00705-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00705-w

Keywords

Navigation