Skip to main content
Log in

Anti-biofouling evaluation of vacuum-assisted hydrophobic ytterbium oxide (Yb2O3) coating on stainless steel by facile spray combustion

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Despite the development of numerous coating techniques and materials, today’s anti-biofouling applications require coatings that are facile and mechanically robust in nature. Studies on the hydrophobicity of rare-earth oxides have risen due to their unusual chemical properties; ytterbium oxide is one such oxide substance. In this study, spray combustion was used to create a hydrophobic coating of ytterbium oxide (Yb2O3) on a stainless steel (SS) substrate, which was then vacuum-treated. GI-XRD analysis confirmed the sesquioxide cubic crystalline structure of Yb2O3. FESEM images displayed an underneath wavy morphological coating with discrete particles on the surface. The thickness and roughness were ~12 and ~0.17 µm, respectively. When 5 and 10 N loads were applied, the coating showed better scratch hardness than uncoated SS. Water contact angle (WCA) <10° indicated superhydrophilicity in the fabricated coating. After vacuum treatment, it became hydrophobic, and the WCA was 128°; because of the increment in the relative area fraction of the C–H bond. The proportion of area covered by blue–green algae (Phormidium sp.) on vacuum-treated Yb2O3 coating was only 3% compared to uncoated SS samples, 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Alexander B T, Philseok K, Stefan K, Caitlin H, Onye A and Joanna A 2015 Nat. Commun. 6 1

    Article  CAS  Google Scholar 

  2. Callow J A and Callow M E 2011 Nat. Commun. 2 1

    Article  Google Scholar 

  3. Yebra D M, Kiil S and Dam-Johansen K 2004 Prog. Org. Coat. 50 75

    Article  CAS  Google Scholar 

  4. Hochbaum A I and Aizenberg J 2010 Nano Lett. 10 3717

    Article  CAS  PubMed  Google Scholar 

  5. Scott C, Fletcher R L and Bremer G B 1996 Biofouling 10 161

    Article  CAS  PubMed  Google Scholar 

  6. Hotos G N 2021 J. Mar. Sci. Eng. 9 798

    Article  Google Scholar 

  7. Bhattacharya A, Srinivasa Rao R and Ghanashyam Krishna M 2007 Sens. Actuator. A Phys. 134 348

    Article  CAS  Google Scholar 

  8. Gisele A, Rajeev D, Hyuk-Min K, Adam T P and Kripa K V 2013 Nat. Mater. 12 315

    Article  Google Scholar 

  9. Zidong G, Ao L, You M, Caixuan F, Byoungchul S, Guoxia L et al 2017 Ceram. Int. 43 15194

    Article  Google Scholar 

  10. Xu P, Pershin L, Mostaghimi J and Coyle T W 2018 Mater. Lett. 211 24

    Article  CAS  Google Scholar 

  11. Xu P, Coyle T W, Pershin L and Mostaghimi J 2018 J. Colloid Interface Sci. 523 35

    Article  CAS  PubMed  Google Scholar 

  12. Xu P, Meng G, Pershin L, Mostaghimi J and Coyle T W 2021 J. Mater. Sci. Technol. 62 107

    Article  CAS  Google Scholar 

  13. Xu P, Coyle T W, Pershin L and Mostaghimi J 2018 Mater. Des. 160 974

    Article  CAS  Google Scholar 

  14. Xu P, Coyle T W, Pershin L and Mostaghimi J 2019 J. Therm. Spray Technol. 28 242

    Article  CAS  Google Scholar 

  15. Wang B, Yu X, Guo P, Huang W, Zeng L, Zhou N et al 2016 Adv. Electron. Mater. 2 1500427

    Article  Google Scholar 

  16. Yu X, Smith J, Zhou N, Zeng L, Guo P, Xia Y et al 2015 Proc. Natl. Acad. Sci. USA 112 3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vardhan R V, Manjunatha M and Mandal S 2020 IOP SciNotes 1 024806

  18. Adeleke S A, Ramesh S, Bushroa A R, Ching Y C, Sopyan I, Malequeet M A et al 2018 Ceram. Int. 44 1802

    Article  CAS  Google Scholar 

  19. Sarraf M, Zalnezhad E, Bushroa A R, Hamouda A M S, Baradaran S, Nasiri-Tabrizi B et al 2014 Appl. Surf. Sci. 321 511

    Article  CAS  Google Scholar 

  20. Misra D, Shariff S M, Mukhopadhyay S and Chatterjee S 2018 Ceram. Int. 44 4248

    Article  CAS  Google Scholar 

  21. Sinha S K, Song T, Wan X and Tong Y 2009 Wear 266 814

    Article  CAS  Google Scholar 

  22. Beegan D, Chowdhury S and Laugier M T 2007 Surf. Coat. Technol. 201 5804

    Article  CAS  Google Scholar 

  23. Chakraborty H, Sinha A, Mukherjee N, Ray D and Chattopadhyay P P 2013 Mater. Lett. 93 137

    Article  CAS  Google Scholar 

  24. Augustin A, Huilgol P, Udupa K R and Bhat K U 2016 J. Mech. Behav. Biomed. Mater. 63 352

    Article  CAS  PubMed  Google Scholar 

  25. Li B, Ding R, Shen Y, Hu Y and Guo Y 2012 Mater. Des. 35 25

    Article  Google Scholar 

  26. Wu Y, Wu L, Yao W, Jiang B, Wu J, Chen Y et al 2021 Electrochim. Acta 374 137913

    Article  CAS  Google Scholar 

  27. Lee D, Choi S, Moon M and Shon M 2021 Bull. Korean Chem. Soc. 42 626

    Article  CAS  Google Scholar 

  28. Callow M E, Callow J A and Wendt D E 2007 in P Zarras, T Wood, B Richey and B C Benicewicz (eds) New Developments in Coatings Technology (Washington: ACS Publications) 962 91

  29. Efimenko K, Finlay J, Callow M E, Callow J A and Genzeret J 2009 ACS Appl. Mater. Interfaces 1 1031

    Article  CAS  PubMed  Google Scholar 

  30. Xie C, Guo H, Zhao W and Zhang L 2020 Langmuir 36 2396

    Article  CAS  PubMed  Google Scholar 

  31. Dowling D P, Nwankire C E, Riihimäki M, Keiski R and Nylen U 2010 Surf. Coat. Technol. 205 1544

    Article  CAS  Google Scholar 

  32. Gudipati C S, Finlay J A, Callow J A, Callow M E and Wooley K L 2005 Langmuir 21 3044

    Article  CAS  PubMed  Google Scholar 

  33. Tesler A B, Kim P, Kolle S, Howell C, Ahanotu O and Aizenberg J 2015 Nat. Commun., Article ID 8649 doi:https://doi.org/10.1038/ncomms9649

  34. Clare A S, Gerhart D J, Rittschof D, Bonaventura J, Smith C and Hadfield M G 1992 Biofouling 6 181

    Article  Google Scholar 

  35. Lim C S, Dickinson G H, Sommer S, Teo S L, Bodkhe R B, Webster D C et al 2015 J. Coat. Technol. Res. 12 533

    Article  CAS  Google Scholar 

  36. Pan J, Peng Q, Zhang G, Xie Q, Gong X, Qian P et al 2021 J. Mater. Sci. Technol. 84 200

    Article  CAS  Google Scholar 

  37. Bloomfield N J, Wei S, Woodham B, Wilkinson P and Robinson A P 2021 Sci. Rep. 11 2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pedersen M L, Weinell C E, Ulusoy B and Dam-Johansen K 2022 J. Coat. Technol. Res. 19 1127

    Article  CAS  Google Scholar 

  39. Romeu M J, Morais J, Gomes L C, Silva R, Vasconcelos V and Mergulhao F J M 2023 FEMS Microbiol. Ecol. 99 1

    Article  CAS  Google Scholar 

  40. MacMullen J, Zhang Z, Dhakal H N, Radulovic J, Karabela A, Tozzi G et al 2014 Int. Biodeterior. Biodegradation 93 54

    Article  CAS  Google Scholar 

  41. Barberousse H, Ruot B, Yéprémian C and Boulon G 2007 Build. Environ. 42 2555

    Article  Google Scholar 

  42. Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X et al 2012 Appl. Biochem. Biotechnol. 167 214

    Article  CAS  PubMed  Google Scholar 

  43. Karle S S, Praveen L L, Vardhan R V, Mandal S 2023 Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2023.08.261

  44. Recipe for standard BG-11 media. Available: www.protocols.io (accessed on 28 October 2021)

  45. Ashwini S and Manjula S 2018 J. Algal Biomass Util. 9 86

  46. Rai S and Rajashekhar M 2015 J. Coast. Life Med. 3 857

    Article  CAS  Google Scholar 

  47. Chen C, Kelder E M, Van D P and Schoonman J 1996 J. Mater. Chem. 6 765

    Article  CAS  Google Scholar 

  48. Vardhan R V, Kumar S and Mandal S 2022 Surf. Interface Anal. 54 510

    Article  CAS  Google Scholar 

  49. Padalia B D, Lang W C, Norris P R, Watson L M and Fabian D J 1977 Proc. R Soc. Lond. Ser. A 354 269

    Article  CAS  Google Scholar 

  50. Oh J, Orejon D, Park W, Cha H, Sett S, Yokoyama Y et al 2022 iScience 25 103691

    Article  CAS  PubMed  Google Scholar 

  51. Kaladharan P, Zacharia P U and Vijayakumaran K 2011 J. Mar. Biol. Assoc. 53 121

    Google Scholar 

  52. Mridula R M and Rajesh K M 2002 Bangladesh J Fish. Res. 6 165

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (CRG/2021/001084). We would like to thank Prof K Narayan Prabhu, Department of Metallurgical and Materials Engineering, for providing access to the water contact angle measuring facility and Prof N K Udayashankar, Department of Physics, for providing access to the vacuum furnace facility, NITK Surathkal, India. We would also like to thank the Department of Metallurgical and Materials Engineering, NITK Surathkal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Mandal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 537 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karle, S.S., Kailasam, K., Vardhan, R.V. et al. Anti-biofouling evaluation of vacuum-assisted hydrophobic ytterbium oxide (Yb2O3) coating on stainless steel by facile spray combustion. Bull Mater Sci 47, 98 (2024). https://doi.org/10.1007/s12034-024-03159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03159-7

Keywords

Navigation