Skip to main content
Log in

Review on the Oxidation of Metallic Thermal Sprayed Coatings: A Case Study with Reference to Rare-Earth Permanent Magnetic Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal spray fabrication of rare-earth permanent magnetic coatings (PMCs) presents potential manufacturing routes for micro-magnetic devices. Despite this potential, thermal spray of PMCs is still not widely explored due to oxidation concerns. It was established that oxidation leads to the loss of ferromagnetic phases in these materials and results in deterioration of magnetic performance. Although this review focuses on a specific class of material, i.e., magnetic materials, there is significant technical crossover to all classes of feedstocks that are employed in thermal spray processing. The oxidation mechanisms and the associated influencing factors are explored in this work to implement effective processing techniques during the deposition process. This paper reviews the various stages and mechanisms of oxidation in thermal spray processes. The factors that influence the extent of oxidation depend on the type of oxidation that is dominant and rely on the type of spray system, powder injection position, and the particle size of feedstock. Among the aspects that are reviewed include the oxygen-fuel ratio for high velocity oxygen-fuel (HVOF), current intensity, gas flow rate, particle size, spray distance, and substrate temperature. Protection strategies to minimize oxidation in thermal spray processes, such as gas shrouding and shielding, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, and C. Badini, Modelling of TBC System Failure: Stress Distribution as a Function of TGO Thickness and Thermal Expansion Mismatch, Eng. Fail. Anal., 2006, 13(3), p 409-426

    Article  CAS  Google Scholar 

  2. S. Deshpande, S. Sampath, and H. Zhang, Mechanisms of Oxidation and Its Role in Microstructural Evolution of Metallic Thermal Spray Coatings—Case Study for Ni-Al, Surf. Coat. Technol., 2006, 200(18-19), p 5395-5406

    Article  CAS  Google Scholar 

  3. S.E. Hartfield-Wünsch and S.C. Tung, The Effect of Microstructure on the Wear Behavior of Thermal Spray Coatings, Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, Materials Park, 1994, p 19-24

    Google Scholar 

  4. J. Alcalá, F. Gaudette, S. Suresh, and S. Sampath, Instrumented Spherical Micro-Indentation of Plasma-Sprayed Coatings, Mater. Sci. Eng. A, 2001, 316(1-2), p 1-10

    Article  Google Scholar 

  5. K. Voleník, V. Novák, J. Dubský, P. Chráska, and K. Neufuss, Properties of Alloy Steel Coatings Oxidized During Plasma Spraying, Mater. Sci. Eng. A, 1997, 234-236, p 493-496

    Article  Google Scholar 

  6. R. Goswami, H. Herman, S. Sampath, X. Jiang, Y. Tian, and G. Halada, Plasma Sprayed Mo-Mo Oxide Nanocomposites: Synthesis and Characterization, Surf. Coat. Technol., 2001, 141(2-3), p 220-226

    Article  CAS  Google Scholar 

  7. R. Harris and A.J. Williams, Attractions of Rare Earth Magnets, Mater. World, 1999, 7(8), p 478-481

    CAS  Google Scholar 

  8. T.S. Chin, Permanent Magnet Films for Applications in Microelectromechanical Systems, J. Magn. Magn. Mater., 2000, 209(1-3), p 75-79

    Article  CAS  Google Scholar 

  9. D.P. Arnold and N. Wang, Permanent Magnets for MEMS, J. Microelectromech. Syst., 2009, 18(6), p 1255-1266

    Article  CAS  Google Scholar 

  10. J.J. Wysłocki, Magnetic Properties, Microstructures and Domain Structures of Arc-Plasma Sprayed Nd-Fe-B Permanent Magnet, J. Mater. Sci., 1992, 27(14), p 3777-3781

    Article  Google Scholar 

  11. G. Rieger, J. Wecker, W. Rodewald, W. Sattler, F.W. Bach, T. Duda, and W. Unterberg, Nd-Fe-B Permanent Magnets (Thick Films) Produced by a Vacuum-Plasma-Spraying Process, J. Appl. Phys., 2000, 87(9), p 5329-5331

    Article  CAS  Google Scholar 

  12. M. Willson, S. Bauser, S. Liu, and M. Huang, Plasma Sprayed Nd-Fe-B Permanent Magnets, J. Appl. Phys., 2003, 93(10), p 7987-7989

    Article  CAS  Google Scholar 

  13. P.C. King, S.H. Zahiri, and M.Z. Jahedi, Rare Earth/Metal Composite Formation by Cold Spray, J. Therm. Spray Technol., 2008, 17(2), p 221-227

    Article  CAS  Google Scholar 

  14. W.F. Liu, S. Suzuki, and K. Machida, Magnetic Properties of Nd-Fe-B Film Magnets Prepared by RF Sputtering, J. Magn. Magn. Mater., 2007, 308(1), p 126-130

    Article  CAS  Google Scholar 

  15. S.L. Chen, W. Liu, Z.D. Zhang, and G.H. Gunaratne, Magnetic Properties and Magnetic Domains of Nd-Fe-B Thin Films, J. Appl. Phys., 2008, 103(2), Article number 023922 (6 pp)

  16. B. Pawlowski and J. Töpfer, Permanent Magnetic NdFeB Thick Films, J. Mater. Sci., 2004, 39(4), p 1321-1324

    Article  CAS  Google Scholar 

  17. T. Speliotis, D. Niarchos, P. Falaras, D. Tsoukleris, and J. Pepin, Nd-Fe-B Thick Films Prepared by Screen Printing, IEEE Trans. Magn., 2005, 41(10), p 3901-3903

    Article  CAS  Google Scholar 

  18. B. Pawlowski, H. Beer, and J. Toepfer, Preparation of Nd-Fe-B Magnetic Films by Ceramic Techniques, Key Eng. Mater., 1997, 132-136(Part 2), p 1409-1411

    Article  CAS  Google Scholar 

  19. B. Pawlowski, S. Schwarzer, A. Rahmig, and J. Töpfer, NdFeB Thick Films Prepared by Tape Casting, J. Magn. Magn. Mater., 2003, 265(3), p 337-344

    Article  CAS  Google Scholar 

  20. R.A. Overfelt, C.D. Anderson, and W.F. Flanagan, Plasma Sprayed Fe76Nd16B8 Permanent Magnets, Appl. Phys. Lett., 1986, 49(26), p 1799-1801

    Article  CAS  Google Scholar 

  21. J. Jacobson and A. Kim, Oxidation Behavior of Nd-Fe-B Magnets, J. Appl. Phys., 1987, 61(8), p 3763-3765

    Article  CAS  Google Scholar 

  22. A.S. Kim and J. Jacobson, Oxidation and Oxidation Protection of Nd-Fe-B Magnets, IEEE Trans. Magn., 1987, MAG-23(5), p 2509-2511

    Article  CAS  Google Scholar 

  23. P. Tenaud, F. Vial, and M. Sagawa, Improved Corrosion and Temperature Behaviour of Modified Nd-Fe-B Magnets, IEEE Trans. Magn., 1990, 26(5), p 1930-1932

    Article  CAS  Google Scholar 

  24. K. Tokuhara and S. Hirosawa, Corrosion Resistance of Nd-Fe-B Sintered Magnets, J. Appl. Phys., 1991, 69(8), p 5521-5523

    Article  CAS  Google Scholar 

  25. F.E. Camp and A.S. Kim, Effect of Microstructure on the Corrosion Behavior of NdFeB and NdFeCoAlB Magnets, J. Appl. Phys., 1991, 70(10), p 6348-6350

    Article  CAS  Google Scholar 

  26. T.S. Chin, R.T. Chang, W.T. Tsai, and M.P. Hung, Electrochemical Behavior of Rare-Earth Magnet Alloys in Various Solutions, IEEE Trans. Magn., 1987, 24(2), p 1927-1929

    Article  Google Scholar 

  27. H. Bala, S. Szymura, and J.J. Wysłocki, Electrochemical Corrosion Resistance of Fe-Nd-B Permanent Magnets, J. Mater. Sci., 1990, 25(1), p 571-574

    Article  CAS  Google Scholar 

  28. G.W. Warren, G. Gao, and Q. Li, Corrosion of NdFeB Permanent Magnet Materials, J. Appl. Phys., 1991, 70(10), p 6609-6611

    Article  CAS  Google Scholar 

  29. J.-M. Le Breton, J. Teillet, P.J. McGuiness, D.S. Edgley, and R. Harris, The Oxidation of a Nd-Fe-B Permanent Magnet at 400°C: A SEM, Microhardness and Mössbauer Study, IEEE Trans. Magn., 1992, 28(5), p 2157-2159

    Article  Google Scholar 

  30. D.S. Edgley, J.M. Le Breton, D. Lemarchand, I.R. Harris, and J. Teillet, Dissociation of Nd2Fe14B During High Temperature Oxidation, J. Magn. Magn. Mater., 1993, 128(1-2), p L1-L7

    Article  CAS  Google Scholar 

  31. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44-66

    Article  CAS  Google Scholar 

  32. P. Fauchais, Understanding Plasma Spraying, J. Phys. D: Appl. Phys., 2004, 37(9), p R86-R108

    Article  CAS  Google Scholar 

  33. J.A. Gan and C.C. Berndt, Design and Manufacture of Nd-Fe-B Thick Coatings by the Thermal Spray Process, Surf. Coat. Technol., 2011, 205(19), p 4697-4704

    Article  CAS  Google Scholar 

  34. J.A. Gan and C.C. Berndt, Effects of Standoff Distance on Porosity, Phase Distribution and Mechanical Properties of Plasma Sprayed Nd-Fe-B Coatings, Surf. Coat. Technol., 2013, 216, p 127-138

    Article  CAS  Google Scholar 

  35. V. De Pauw, D. Lemarchand, and J.J. Malandain, A Structural and Kinetic Study of the Oxidation of the Intermetallic Sm2(Fe, Co)17 Compound for Permanent Magnets, J. Magn. Magn. Mater., 1997, 172(3), p 269-276

    Article  Google Scholar 

  36. Y. Li, H.E. Evans, I.R. Harris, and I.P. Jones, The Oxidation of NdFeB Magnets, Oxid. Met., 2003, 59(1-2), p 167-182

    Article  CAS  Google Scholar 

  37. W.M. Pragnell, A.J. Williams, and H.E. Evans, The Oxidation of SmCo Magnets, J. Appl. Phys., 2008, 103(7), Article number 07E127 (3 pp)

  38. S. Kardelky, A. Gebert, O. Gutfleisch, A. Handstein, U. Wyss, and L. Schultz, Corrosion Behavior of Sm-Co-Based Permanent Magnets in Oxidizing Environments, IEEE Trans. Magn., 2004, 40(4), p 2931-2933

    Article  CAS  Google Scholar 

  39. Z. Yang, X. Peng, Q. Feng, Z. Guo, W. Li, and F. Wang, The Mechanism of High Temperature Oxidation of a SmCo-Based Magnetic Alloy, Corros. Sci., 2012, 61, p 72-82

    Article  CAS  Google Scholar 

  40. D.S. Edgley, J.M. Le Breton, S. Steyaert, F.M. Ahmed, I.R. Harris, and J. Teillet, Characterisation of High Temperature Oxidation of Nd-Fe-B Magnets, J. Magn. Magn. Mater., 1997, 173(1-2), p 29-42

    Article  CAS  Google Scholar 

  41. R.W. Bartlett and P.J. Jorgensen, Microstructure and Growth Kinetics of the Fibrous Composite Subscale Formed by Internal Oxidation of SmCo5, Metall. Trans., 1974, 5(2), p 355-361

    Article  CAS  Google Scholar 

  42. J.M. Le Breton and J. Teillet, Oxidation of (Nd, Dy)FeB Permanent Magnets Investigated by 57Fe Mossbauer Spectroscopy, IEEE Trans. Magn., 1990, 26(5), p 2652-2654

    Article  Google Scholar 

  43. L. Castaldi, M.R.J. Gibbs, and H.A. Davies, Effect of the Substrate Temperature on the Properties of RE-Fe-B Thin Film Magnets, J. Appl. Phys., 2004, 96(9), p 5063-5068

    Article  CAS  Google Scholar 

  44. M. Nakano, S. Sato, F. Yamashita, T. Honda, J. Yamasaki, K. Ishiyama, M. Itakura, J. Fidler, T. Yanai, and H. Fukunaga, Review of Fabrication and Characterization of Nd-Fe-B Thick Films for Magnetic Micromachines, IEEE Trans. Magn., 2007, 43(6), p 2672-2676

    Article  CAS  Google Scholar 

  45. A.S. Lileev, A.A. Parilov, and V.G. Blatov, Properties of Hard Magnetic Nd-Fe-B Films Versus Different Sputtering Conditions, J. Magn. Magn. Mater., 2002, 242-245(Part 2), p 1300-1303

    Article  CAS  Google Scholar 

  46. S.L. Chen, J.G. Zheng, W. Liu, and Z.D. Zhang, Structure and Magnetic Properties of High-Energy Product Nd-Fe-B/Nd-O Thin Films, J. Phys. D: Appl. Phys., 2007, 40(6), p 1816-1820

    Article  CAS  Google Scholar 

  47. W. Rodewald, Rare-Earth Transition-Metal Magnets, Handbook of Magnetism and Advanced Magnetic Materials, H. Kronmüller and S. Parkin, Ed., Wiley, New York, 2007,

    Google Scholar 

  48. M.I. Qadeer, B. Azhdar, M.S. Hedenqvist, and S.J. Savage, Anomalous High Temperature Oxidation of Sm2(Fe, Co., Cu, Zr)17 Particles, Corros. Sci., 2012, 65, p 453-460

    Article  CAS  Google Scholar 

  49. V. De Pauw, D. Lemarchand, J.M. Saiter, and C. Devallencourt, Oxidation Study of Bulk and Powdered Sm2(Fe0.5Co0.5)17N x (x = 0, 2.9) Compounds, J. Alloys Compd., 1998, 266(1-2), p 293-299

    Article  Google Scholar 

  50. W.M. Pragnell, H.E. Evans, and A.J. Williams, Oxidation Protection of Sm2Co17-Based Alloys, J. Alloys Compd., 2012, 517, p 92-97

    Article  CAS  Google Scholar 

  51. N. Asahi, K. Asaka, K. Ueda, and M. Sasaki, Thermal Spray of Nd-Fe-B, First International Conference on Processing Materials for Properties, H. Henein and T. Oki, Ed., The Minerals, Metals & Materials Society (TMS), Warrendale, 1993, p 1197-1200

    Google Scholar 

  52. K. Turek, P. Liszkowski, and H. Figiel, Kinetics of Oxidation of Nd-Fe-B Powders, IEEE Trans. Magn., 1993, 29(6), p 2782-2784

    Article  CAS  Google Scholar 

  53. K.J. Strnat and R.M.W. Strnat, Rare Earth-Cobalt Permanent Magnets, J. Magn. Magn. Mater., 1991, 100(1-3), p 38-56

    Article  CAS  Google Scholar 

  54. E. Burzo, Permanent Magnets Based on R-Fe-B and R-Fe-C Alloys, Rep. Prog. Phys., 1998, 61(11), p 1099-1266

    Article  CAS  Google Scholar 

  55. M. Matsuura, R. Goto, N. Tezuka, and S. Sugimoto, Influence of Nd Oxide Phase on the Coercivity of Nd-Fe-B Thin Films, Mater. Trans., 2010, 51(10), p 1901-1904

    Article  CAS  Google Scholar 

  56. S. Heisz and G. Hilscher, The Origin of Graduated Demagnetization Curves of NdFeB Magnets, J. Magn. Magn. Mater., 1987, 67(1), p 20-28

    Article  CAS  Google Scholar 

  57. E.D. Dickens, Jr, and A.M. Mazany, The Corrosion and Oxidation of Nd-Fe-B Magnets, J. Appl. Phys., 1990, 67(9), p 4613-4615

    Article  CAS  Google Scholar 

  58. C.M. Hackett and G.S. Settles, Research on HVOF Gas Shrouding for Coating Oxidation Control, Advances in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, Ed., ASM International, Materials Park, 1995, p 21-29

    Google Scholar 

  59. K. Dobler, H. Kreye, and R. Schwetzke, Oxidation of Stainless Steel in the High Velocity Oxy-Fuel Process, J. Therm. Spray Technol., 2000, 9(3), p 407-413

    Article  CAS  Google Scholar 

  60. M. Li and P.D. Christofides, Computational Study of Particle In-Flight Behavior in the HVOF Thermal Spray Process, Chem. Eng. Sci., 2006, 61(19), p 6540-6552

    Article  CAS  Google Scholar 

  61. A. Vardelle, P. Fauchais, and N.J. Themelis, Oxidation of Metal Droplets in Plasma Sprays, Advances in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, Ed., ASM International, Materials Park, 1995, p 175-180

    Google Scholar 

  62. H. Zhang, A. Vardelle, and N.J. Themelis, In-Flight Oxidation and Evaporation of Plasma-Sprayed Iron Particles, J. High Temp. Mater. Process., 2003, 7(3), p 277-298

    Article  CAS  Google Scholar 

  63. K. Voleník, F. Hanousek, P. Chráska, J. Ilavský, and K. Neufuss, In-Flight Oxidation of High-Alloy Steels During Plasma Spraying, Mater. Sci. Eng., 1999, 272(1), p 199-206

    Article  Google Scholar 

  64. A.A. Syed, A. Denoirjean, P. Deniorjean, J.C. Labbe, and P. Fauchais, Influence of Plasma Spraying Parameters on the In-Flight Oxidation of Stainless Steel Particles, Thermal Spray 2004: Advances in Technology and Application, ASM International, Materials Park, 2004, p. 277-282

  65. A.A. Syed, A. Denoirjean, P. Fauchais, and J.C. Labbe, On the Oxidation of Stainless Steel Particles in the Plasma Jet, Surf. Coat. Technol., 2006, 200(14-15), p 4368-4382

    Article  CAS  Google Scholar 

  66. V.V. Sobolev and J.M. Guilemany, Effect of Oxidation on Droplet Flattening and Splat-Substrate Interaction in Thermal Spraying, J. Therm. Spray Technol., 1999, 8(4), p 523-530

    Article  CAS  Google Scholar 

  67. H. Ageorges and P. Fauchais, Oxidation of Stainless Steel Particles With and Without an Alumina Shell During Their Flight in a Plasma Jet, High Temp. Mater. Process., 2000, 4(3), p 323-337

    CAS  Google Scholar 

  68. R.A. Neiser, M.F. Smith, and R.C. Dykhuizen, Oxidation in Wire HVOF-Sprayed Steel, J. Therm. Spray Technol., 1998, 7(4), p 537-545

    Article  CAS  Google Scholar 

  69. G. Espie, A. Denoirjean, P. Fauchais, J.C. Labbe, J. Dubsky, O. Schneeweiss, and K. Volenik, In-Flight Oxidation of Iron Particles Sprayed Using Gas and Water Stabilized Plasma Torch, Surf. Coat. Technol., 2005, 195(1), p 17-28

    Article  CAS  Google Scholar 

  70. A.A. Syed, A. Denoirjean, P. Denoirjean, J.C. Labbe, and P. Fauchais, In-Flight Oxidation of Stainless Steel Particles in Plasma Spraying, J. Therm. Spray Technol., 2005, 14(1), p 117-124

    Article  Google Scholar 

  71. M.J.M. Hill, On a Spherical Vortex, Phil. Trans. R. Soc. Lond. A, 1894, 185, p 213-245

    Article  Google Scholar 

  72. V.V. Sobolev and J.M. Guilemany, Oxidation of Coatings in Thermal Spraying, Mater. Lett., 1998, 37(4-5), p 231-235

    Article  CAS  Google Scholar 

  73. C.J. Li and W.Y. Li, Effect of Sprayed Powder Particle Size on the Oxidation Behavior of MCrAlY Materials During High Velocity Oxygen-Fuel Deposition, Surf. Coat. Technol., 2003, 162(1), p 31-41

    Article  CAS  Google Scholar 

  74. A. Vardelle, M. Vardelle, H. Zhang, N.J. Themelis, and K. Gross, Volatilization of Metal Powders in Plasma Sprays, J. Therm. Spray Technol., 2002, 11(2), p 244-252

    Article  CAS  Google Scholar 

  75. C.M. Hackett and G.S. Settles, Turbulent Mixing of the HVOF Thermal Spray and Coating Oxidation, Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, Materials Park, 1994, p 307-312

    Google Scholar 

  76. S. Matthews, B. James, and M. Hyland, The Effect of Heat Treatment on the Oxidation Mechanism of Blended Powder Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 2010, 19(1-2), p 119-127

    Article  CAS  Google Scholar 

  77. Z. Zeng, S. Kuroda, J. Kawakita, M. Komatsu, and H. Era, Effects of Some Light Alloying Elements on the Oxidation Behavior of Fe and Ni-Cr Based Alloys During Air Plasma Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 128-136

    Article  CAS  Google Scholar 

  78. T. Fukushima and S. Kuroda, Oxidation of HVOF Sprayed Alloy Coatings and Its Control by a Gas Shroud, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., ASM International, Materials Park, 2001, p 527-532

    Google Scholar 

  79. R. Knight and R.W. Smith, HVOF Sprayed 80/20 NiCr Coatings-Process Influence Trends, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, Materials Park, 1992, p 159-164

    Google Scholar 

  80. H. Voggenreiter, H. Huber, S. Beyer, and H.J. Spies, Influence of Particle Velocity and Molten Phase on the Chemical and Mechanical Properties of HVOF-Sprayed Structural Coatings of Alloy 316L, Advances in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, Ed., ASM International, Materials Park, 1995, p 303-308

    Google Scholar 

  81. L.N. Moskowitz, and D.J. Lindley, High Density Thermal Spray Coating, U.S. Patent 5,151,308, Amoco Corporation (Chicago, IL) issued 29 Sept. 1992

  82. J. Kim, K. Kang, S. Yoon, S. Kumar, H. Na, and C. Lee, Oxidation and Crystallization Mechanisms in Plasma-Sprayed Cu-Based Bulk Metallic Glass Coatings, Acta Mater., 2010, 58(3), p 952-962

    Article  CAS  Google Scholar 

  83. D. Cheng, Q. Xu, G. Trapaga, and E.J. Lavernia, A Numerical Study of High-Velocity Oxygen Fuel Thermal Spraying Process. Part I: Gas Phase Dynamics, Metall. Mater. Trans. A, 2001, 32(7), p 1609-1620

    Article  Google Scholar 

  84. W. Zhang, L.L. Zheng, H. Zhang, and S. Sampath, Study of Injection Angle and Carrier Gas Flow Rate Effects on Particles In-Flight Characteristics in Plasma Spray Process: Modeling and Experiments, Plasma Chem. Plasma Process., 2007, 27(6), p 701-716

    Article  CAS  Google Scholar 

  85. M.P. Planche, H. Liao, and C. Coddet, Oxidation Control in Atmospheric Plasma Spraying Coating, Surf. Coat. Technol., 2007, 202(1), p 69-76

    Article  CAS  Google Scholar 

  86. O. Kovářík, X. Fan, and M. Boulos, In Flight Properties of W Particles in an Ar-H2 Plasma, J. Therm. Spray Technol., 2007, 16(2), p 229-237

    Article  CAS  Google Scholar 

  87. V. Gourlaouen, E. Verna, and P. Beaubien, Influence of Flame Parameters on Stainless Steel Coatings Properties, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., ASM International, Materials Park, 2000, p 487-493

    Google Scholar 

  88. V. Gourlaouen, E. Verna, K. Khor, and P.S.T. Guek, Role of Some Fuel Gases on Properties of HVOF Metallic Coatings, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, Ed., ASM International, Materials Park, 2001, p 519-525

    Google Scholar 

  89. D. Seo, K. Ogawa, T. Shoji, and S. Murata, Effect of Particle Size Distribution on Isothermal Oxidation Characteristics of Plasma Sprayed CoNi- and CoCrAlY Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 954-966

    Article  CAS  Google Scholar 

  90. C.J. Li, H.T. Wang, Q. Zhang, G.J. Yang, W.Y. Li, and H. Liao, Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 95-101

    Article  CAS  Google Scholar 

  91. G. Espie, P. Fauchais, J.C. Labbe, A. Vardelle, and B. Hannoyer, Oxidation of Iron Particles During APS: Effect of the Process on Formed Oxide Wetting of Droplets on Ceramics Substrates, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., ASM International, Materials Park, 2001, p 821-827

    Google Scholar 

  92. S.H. Zahiri, D. Fraser, S. Gulizia, and M. Jahedi, Effect of Processing Conditions on Porosity Formation in Cold Gas Dynamic Spraying of Copper, J. Therm. Spray Technol., 2006, 15(3), p 422-430

    Article  CAS  Google Scholar 

  93. Z. Zeng, N. Sakoda, T. Tajiri, and S. Kuroda, Structure and Corrosion Behavior of 316L Stainless Steel Coatings Formed by HVAF Spraying With and Without Sealing, Surf. Coat. Technol., 2008, 203(1-2), p 284-290

    Article  CAS  Google Scholar 

  94. J.E. Jackson, Method for Shielding a Gas Effluent, U.S. Patent 3,470,347, Union Carbide Corporation (New York, NY), issued 30 Sept. 1969

  95. A.J. Rotolico, and J.R. Weodarczy, Shrouded Thermal Spray Gun and Method, U.S. Patent 4,964,568, The Perkin-Elmer Corporation (Norwalk, CT), issued 23 Oct. 1990

  96. W. Simm, H.-T. Steine, and K.P. Streb, Apparatus for the Flame Spraying of Powder Materials by Means of an Autogenous Flame, U.S. Patent 5,014,915, Castolin S.A. (St. Sulpice, CH) issued 14 May 1991

  97. C. Reiter, Device for the Production of a Protective Gas Mantle in Plasma Spraying, U.S. Patent 5,154,354, Nova-Werke AG (Effretikon, CH), issued 13 Oct. 1992

  98. A. Dolatabadi, J. Mostaghimi, and V. Pershin, Effect of a Cylindrical Shroud on Particle Conditions in High Velocity Oxy-Fuel Spray Process, Sci. Technol. Adv. Mater., 2002, 3(3), p 245-255

    Article  CAS  Google Scholar 

  99. I. Thomson, V. Pershin, J. Mostaghimi, and S. Chandra, Experimental Testing of a Curvilinear Gas Shroud Nozzle for Improved Plasma Spraying, Plasma Chem. Plasma Process., 2001, 21(1), p 65-82

    Article  CAS  Google Scholar 

  100. M. Jankovic, J. Mostaghimi, and V. Pershin, Design of a New Nozzle for Direct Current Plasma Guns with Improved Spraying Parameters, J. Therm. Spray Technol., 2000, 9(1), p 114-120

    Article  Google Scholar 

  101. X. Wang, J. Heberlein, E. Pfender, and W. Gerberich, Effect of Nozzle Configuration, Gas Pressure, and Gas Type on Coating Properties in Wire Arc Spray, J. Therm. Spray Technol., 1999, 8(4), p 565-575

    Article  Google Scholar 

  102. X. Wang, Effect of Shrouded CO2 Gas Atomization on Coating Properties in Wire Arc Spray, Advances in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, Ed., ASM International, Materials Park, 1995, p 31-37

    Google Scholar 

  103. K.D. Kang and S.H. Hong, Numerical Analysis of Shroud Gas Effects on Air Entrainment into Thermal Plasma Jet in Ambient Atmosphere of Normal Pressure, J. Appl. Phys., 1999, 85(9), p 6373-6380

    Article  CAS  Google Scholar 

  104. D.T. Gawne, T. Zhang, and B. Liu, Computational Analysis of the Influence of a Substrate, Solid Shield and Gas Shroud on the Flow Field of a Plasma Jet, Surf. Coat. Technol., 2002, 153(2-3), p 138-147

    Article  CAS  Google Scholar 

  105. S. Jamais, M. Creaven, and C. Rinaldi, Calculated and Measured Oxygen Contents in the Gas Flow of a Shrouded Thermal Spray Process, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Laguscheider, Ed., ASM International, Materials Park, 2001, p 903-910

    Google Scholar 

  106. K. Cheng, X. Chen, H.X. Wang, and W. Pan, Modeling Study of Shrouding Gas Effects on a Laminar Argon Plasma Jet Impinging upon a Flat Substrate in Air Surroundings, Thin Solid Films, 2006, 506-507, p 724-728

    Article  CAS  Google Scholar 

  107. Z. Zeng, S. Kuroda, and H. Era, Comparison of Oxidation Behavior of Ni-20Cr Alloy and Ni-Base Self-Fluxing Alloy During Air Plasma Spraying, Surf. Coat. Technol., 2009, 204(1-2), p 69-77

    Article  CAS  Google Scholar 

  108. M.S. Patel, Flame Spray Powder Mix, U.S. Patent 4,230,748, Eutectic Corporation (Flushing, NY), issued 28 Oct. 1980

  109. V. Higuera, F.J. Belzunce, A. Carriles, and S. Poveda, Influence of the Thermal-Spray Procedure on the Properties of a Nickel-Chromium Coating, J. Mater. Sci., 2002, 37(3), p 649-654

    Article  CAS  Google Scholar 

  110. M.P. Planche, H. Liao, B. Normand, and C. Coddet, Relationships Between NiCrBSi Particle Characteristics and Corresponding Coating Properties Using Different Thermal Spraying Processes, Surf. Coat. Technol., 2005, 200(7), p 2465-2473

    Article  CAS  Google Scholar 

  111. Q. Wei, Z. Yin, and H. Li, Oxidation Control in Plasma Spraying NiCrCoAlY Coating, Appl. Surf. Sci., 2012, 258(12), p 5094-5099

    Article  CAS  Google Scholar 

  112. R.A. Mahesh, R. Jayaganthan, and S. Prakash, Oxidation Behavior of HVOF Sprayed Ni-5Al Coatings Deposited on Ni- and Fe-Based Superalloys Under Cyclic Condition, Mater. Sci. Eng. A, 2008, 475(1-2), p 327-335

    Article  CAS  Google Scholar 

  113. J.P. Singh, B.G. Nair, D.P. Renusch, M.P. Sutaria, and M.H. Grimsditch, Damage Evolution and Stress Analysis in Zirconia Thermal Barrier Coatings During Cyclic and Isothermal Oxidation, J. Am. Ceram. Soc., 2001, 84(10), p 2385-2393

    Article  CAS  Google Scholar 

  114. M. Eskner and R. Sandström, Mechanical Properties and Temperature Dependence of an Air Plasma-Sprayed NiCoCrAlY Bondcoat, Surf. Coat. Technol., 2006, 200(8), p 2695-2703

    Article  CAS  Google Scholar 

  115. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46(5), p 505-553

    Article  Google Scholar 

  116. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33, p 383-417

    Article  CAS  Google Scholar 

  117. C. Tekmen, Y. Tsunekawa, M. Yoshida, and M. Okumiya, Microstructural Characterization of In-Flight Particles in Plasma Spray Process, Plasma Process. Polym., 2009, 6(SUPPL. 1), p S223-S226

    Article  CAS  Google Scholar 

  118. N. Sakakibara, Y. Manabe, Y. Hiromoto, and Y. Kobayashi, Development of High Quality Thermal Sprayed Metal Coating Process by Shielding Control, Thermal Spray 2004: Advances in Technology and Application, 2004, p 595-599

  119. J.E. Cromwell, Flame-Sprayable Composition of Nickel Coated Molybdenum, U.S. Patent 3,843,334, Koppers Company Inc., issued 22 Oct 1974

  120. E.R. Novinski, and J.H. Harrington, Aluminium- and Molybdenum-Coated Nickel, Copper or Iron Core Flame Spray Materials, U.S. Patent 3,841,901, Metco Inc. (Westbury, NY), issued 15 Oct 1974

  121. J.H. Harrington, and F.N. Longo, Composite Iron Molybdenum Boron Flame Spray Power, U.S. Patent 3,991,240, Metco Inc. (Westbury, NY), issued 9 Nov 1976

  122. F.J. Dittrich, G.J. Durmann, and H.S. Ingham, Jr., Aluminium-Coated Nickel or Cobalt Core Flame Spray Materials, U.S. Patent 4,019,875, Metco Inc. (Westbury, NY), issued 26 Apr 26

  123. J.H. Harrington, and S. Rangaswamy, Aluminium and Cobalt Coated Thermal Spray Powder, U.S. Patent 4,578,115, Metco Inc. (Westbury, NY), issued 25 Mar. 1986

  124. S. Rangaswamy, and J.H. Harrington, Aluminium and Yttrium Oxide Coated Thermal Spray Powder, U.S. Patent 4,578,114, Metco Inc. (Westbury, NY), issued 25 Mar. 1986

  125. S. Rangaswamy, and R.A. Miller, Composite Powders for Thermal Spray Coating, U.S. Patent 5,385,789, Sulzer Plasma Technik Inc. (Troy, MI), issued 31 Jan. 1995

  126. F.J. Hermanek, Self-Bonding MCrAlY Powder, U.S. Patent 6,410,159 B1, Praxair S. T. Technology Inc. (North Haven, CT), issued 25 Jun. 2002

  127. F.N. Longo, High Temperature Flame Spray Powder, U.S. Patent 3,313,633, Metco Inc. (Westbury, NY), issued 11 Apr. 1967

  128. L. Russo, M.R. Dorfman, and K. LaPierre, 2002, Superalloy HVOF Powders with Improved High Temperature Oxidation, Corrosion and Creep Resistance, U.S. Patent 6,346,134 B1, Sulzer Metco Inc. (Westbury, NY), issued 12 Feb. 2002

  129. R.W. Wilson, The Contact Resistance and Mechanical Properties of Surface Films on Metals, Proc. Phys. Soc. B, 1955, 68(9), p 625-641

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by a Swinburne University Postgraduate Research Award (SUPRA) for this research and development of thermal spray processing of magnetic coatings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Ann Gan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, J.A., Berndt, C.C. Review on the Oxidation of Metallic Thermal Sprayed Coatings: A Case Study with Reference to Rare-Earth Permanent Magnetic Coatings. J Therm Spray Tech 22, 1069–1091 (2013). https://doi.org/10.1007/s11666-013-9955-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9955-2

Keywords

Navigation