Skip to main content
Log in

Microstructure and growth kinetics of the fibrous composite subscale formed by internal oxidation of SmCo5

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The oxidation of SmCo5 is an unusual example of selective internal oxidation in which the subscale formed consists of a composite microstructure containing samarium oxide fibers and β-cobalt. The oxide fiber size increases with oxidation temperature, and the orientation of the fibers is generally perpendicular to the subscale-alloy interface. The unusual structure results because of the high concentration of samarium in the intermetallic compound, coupled with a low solubility of samarium in metallic cobalt resulting in a subscale consisting of 39 vol pct oxide. Growth of the subscale follows the parabolic oxidation law, and the kinetics have been determined between 100 and 1125°C. The kinetics are too fast to be explained by lattice diffusion in either the oxide or the cobalt phases. Oxygen diffusion down the cobalt-oxide fiber interface appears to be the transport mechanism for this diffusion controlled process. The oxidation behavior of PrCo5 is identical with that of SmCo5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Becker:IEEE TransMagn., 1963, MAG-4, p. 239.

    Google Scholar 

  2. H. Mildrum, A. E. Ray, and K. Strnat:Proc. of the 8th Rare Earth Research Conference, pp. 21–30, T. A. Henrie and R. E. Lindstrom, Eds., Reno, Nevada, 1970.

    Google Scholar 

  3. J. J. Becker:IEEE Trans. Magn., 1969, MAG-5, p. 211.

    Article  Google Scholar 

  4. K. A. Gschneidner:Rare Earth Alloys, pp. 149–53, D. Van Nostrand, New York, 1961.

    Google Scholar 

  5. P. Kofstad:Nomtoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Chap. 12, Wiley-Interscience, New York, 1972.

    Google Scholar 

  6. T. L. Felmlee and L. Eyring:J. Inorg. Chem., 1968, vol. 1, pp. 660–66.

    Article  Google Scholar 

  7. P. Kofstad:J. Inorg. Chem., 1968, vol. 1, p. 238.

    Google Scholar 

  8. J. S. Swisher: “Internal Oxidation,” inOxidation of Metals and Alloys, p. 238, D. L. Douglass, Ed., American Society for Metals, Metals Park, Ohio, 1971.

    Google Scholar 

  9. J. Crank:The Mathematics of Diffusion, p. 117, Oxford Press, London, 1956.

    Google Scholar 

  10. A. U. Seybolt and C. H. Mathewson:Trans. AIME, 1935, vol. 117, p. 156.

    Google Scholar 

  11. G. D. Stone, G. R. Weber, and L. Eyring: “Mass Transport in Oxides,”NBS Special Publication 296, p. 179, NBS, Washington, D.C., 1968.

    Google Scholar 

  12. C. D. Wirkus, M. F. Berard, and D. R. Wilder:J. Amer. Ceram. Soc, 1967, vol. 50, p. 113.

    Article  CAS  Google Scholar 

  13. M. F. Berard, C. D. Wirkus, and D. R. Wilder:J. Amer. Ceram. Soc, 1968, vol. 51, p. 643.

    Article  CAS  Google Scholar 

  14. V. B. Tare and H. Schmalzried:Z. Phys. Chem. N.F., 1964, vol. 43, p. 30.

    Article  CAS  Google Scholar 

  15. C. E. Wicks and F. E. Block: “Thermodynamic Properties of 65 Elements—Their Oxides, Halides, Carbides, and Nitrides,” Bull. 605, U.S. Bureau of Mines, Government Printing Office, Washington, D.C., 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartlett, R.W., Jorgensen, P.J. Microstructure and growth kinetics of the fibrous composite subscale formed by internal oxidation of SmCo5. Metall Trans 5, 355–361 (1974). https://doi.org/10.1007/BF02644102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644102

Keywords

Navigation