Skip to main content
Log in

The Effect of Tungsten Addition to Fe-9Cr Alloy on Steam Oxidation Behavior at 923 K

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This study focuses on the effect of tungsten as a Laves phase forming element on the steam oxidation behavior of the Fe-9Cr alloy. Steam oxidation tests of the Fe-9Cr alloys with different tungsten concentrations were conducted in an Ar-15%H2O gas mixture at 923 K for up to 345.6 ks. The results showed that tungsten addition significantly improved the oxidation resistance of the Fe-9Cr alloy. By forming FeWO4 in the internal oxidation zone (IOZ) during oxidation, the oxygen partial pressure in this zone corresponded to Fe(W)/Fe2W/FeWO4 equilibrium, which is slightly lower than the Fe/FeO equilibrium. Therefore, the matrix of the IOZ was not being oxidized to form the inner scale, resulting in an improvement in oxidation resistance. A finer and higher fraction of the Fe2W phase produced by rapid cooling provided better Cr enrichment and improved the oxidation resistance of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Masuyama, ISIJ International 41, (6), 2001 (612–625).

    Article  CAS  Google Scholar 

  2. F. Abe, Science and Technology of Advanced Materials 9, (1), 2008 (013002).

    Article  Google Scholar 

  3. J. Hald, International Journal of Pressure Vessels and Piping 85, 2008 (30–37).

    Article  CAS  Google Scholar 

  4. F. Abe, Metallurgical and Materials Transactions A 36, (2), 2005 (321–332).

    Article  Google Scholar 

  5. L. Ma, Y. Wang, and G. Di, Materials 11, 2008 (2080).

    Article  Google Scholar 

  6. P. Yan, Z. Liu, H. Bao, Y. Weng, and W. Liu, Materials and Design 54, 2014 (874–879).

    Article  CAS  Google Scholar 

  7. T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M. E. Brito, and H. Yokokawa, Journal of Power Sources 176, (1), 2008 (54–61).

    Article  CAS  Google Scholar 

  8. A. Safikhani, M. Esmailian, T. Tinatiseresht, and G. B. Darband, International Journal of Hydrogen Energy 41, (14), 2016 (6045–6052).

    Article  CAS  Google Scholar 

  9. S. Ide, Y. Funakawa, Y. Kato, and O. Furukimi, Materials Science Forum 539, 2007 (4887–4890).

    Google Scholar 

  10. D. W. Yun, H. S. Seo, J. H. Jun, J. M, Lee, D. H. Kim, K. Y. Kim, ECS Transactions, 25(2), 1463(2009).

  11. Z. Zhu, H. Xu, D. Jiang, X. Mao, and N. Zhang, Corrosion Science 113, 2016 (172–179).

    Article  CAS  Google Scholar 

  12. Z. Zhu, H. Xu, D. Jiang, and N. Zhang, Oxidation of Metals 86, (5), 2016 (483–496).

    Article  CAS  Google Scholar 

  13. F. Abe, H. Kutsumi, H. Haruyama, and H. Okubo, Corrosion Science 114, 2017 (1–9).

    Article  CAS  Google Scholar 

  14. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellan, T. Olszewski, L. Hierro, W. J. Quadakkers, and G. R. Holcomb, Oxidation of Metals 74, (5–6), 2010 (319–340).

    Article  CAS  Google Scholar 

  15. S. Tang, S. Zhu, X. Tang, H. Pan, and Z. D. Xiang, Corrosion Science 82, 2014 (255–264).

    Article  CAS  Google Scholar 

  16. V. Lepingle, G. Louis, D. Allue, B. Lefebvre, and B. Vandenberghe, Corrosion Science 50, (4), 2008 (1011–1019).

    Article  CAS  Google Scholar 

  17. N. G. Schmahl and H. Dillenburg, Zeitschrift für Physikalische Chemie Neue Folge 77, 1972 (113–126).

    Article  CAS  Google Scholar 

  18. T. N. Rezukhina and T. A. Kashina, The Journal of Chemical Thermodynamics 8, (6), 1976 (519–523).

    Article  CAS  Google Scholar 

  19. D. J. Young, “High Temperature Oxidation and Corrosion of Metals”, Second Edition, Elsevier (2016).

  20. L. Wei, L. Chen, H. Liu, L. Han, N. Gong, and R. D. K. Misra, Oxidation of Metals 93, (1), 2020 (195–213).

    Article  CAS  Google Scholar 

  21. A. R. Massih and J. L. Jernkvist, Computational Materials Science 39, (2), 2007 (349–358).

    Article  CAS  Google Scholar 

  22. N. H. Pryds and X. Huang, Metallurgical and Materials Transactions A 31, (12), 2000 (3155–3166).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported in part by JSPS KAKENHI Grant Number JP19K05055. The authors also thank the Open Facility Center, Materials Analysis Division, Tokyo Institute of Technology for conducting the XRF measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidyana Utami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utami, L., Ueda, M. The Effect of Tungsten Addition to Fe-9Cr Alloy on Steam Oxidation Behavior at 923 K. Oxid Met 97, 341–358 (2022). https://doi.org/10.1007/s11085-021-10093-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10093-0

Keywords

Navigation