Skip to main content
Log in

Finite Element Analysis of Plastic Deformation During Impression Creep

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. M.D. Mathew, Naveena, and D. Vijayanand, Impression Creep Behavior of 316LN Stainless Steel, J. Mater. Eng. Perform., 2013, 22, p 492–497

    Article  Google Scholar 

  2. Naveena, V.D. Vijayanand, V. Ganesan, K. Laha, and M.D. Mathew, Evaluation of the Effect of Nitrogen on Creep Properties of 316LN Stainless Steel from Impression Creep Tests, Mater. Sci. Eng. A., 2012, 552, p 112–118

    Article  Google Scholar 

  3. J.C.M. Li and S.N.G. Chu, Impression Creep: A New Creep Test, J. Mater. Sci., 1977, 12, p 2200–2208

    Article  Google Scholar 

  4. T.H. Hyde, W. Sun, and C.J. Hyde, Small Specimen Creep Testing, Applied Creep Mechanics, McGraw-Hill Education, New York, 2013, p 327–334.

  5. I. Sneddon, The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile, Int. J. Eng. Sci., 1965, 3, p 47–57

    Article  Google Scholar 

  6. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1987

    Google Scholar 

  7. D.A. Hills, D. Nowell, and A. Sackfield, Mechanics of Elastic Contacts, Butterworth, Oxford, 1993

    Google Scholar 

  8. G. Feng, S. Qu, Y. Huang, and W.D. Nix, An Analytical Expression for the Stress Field Around an Elastoplastic Indentation/Contact, Acta. Mater., 2007, 55, p 2929–2938

    Article  Google Scholar 

  9. F. Yang, J.C.M. Li, and C.W. Shih, Computer Simulation of Impression Creep using the Hyperbolic Sine Stress Law, Mater. Sci. Eng. A., 1995, 201, p 50–57

    Article  Google Scholar 

  10. E.C. Yu and J.C.M. Li, Impression Creep of LiF Single Crystals, Philos. Mag., 1977, 36(4), p 811–825

    Article  Google Scholar 

  11. T.H. Hyde, K.A. Yehia, and A.A. Becker, Interpretation of Impression Creep Data using a Reference Approach, Int. J. Mech. Sci., 1993, 35, p 451–462

    Article  Google Scholar 

  12. Y.C. Lu, S.N.V.R.K. Kurapati, and F. Yang, Finite Element Analysis of Cylindrical Indentation for Determining Plastic Properties of Materials in Small Volumes, J. Phys. D Appl. Phys., 2008, 11, p 115415–115500

    Article  Google Scholar 

  13. ABAQUS Inc., ABAQUS Theory Manual, Hibbitt, Karlson, and Sorensen, Inc., Pawtucket, 2010

  14. RCC-MR, 2007, Design and Construction Rules for Mechanical Components of Nuclear Installations, Section 2, Subsection Z.A3.3S.22, AFCEN, Paris, 2007

  15. V. Ganesan, M.D. Mathew, and K. Bhanu Sankara Rao, Influence of Nitrogen on Tensile Properties of 316LN SS, Mater. Sci. Technol., 2009, 25, p 614–618

    Article  Google Scholar 

  16. J. Ganesh Kumar, M. Chowdar, V. Ganesan, R.K. Paretkar, K. Bhanu Sankara Rao, and M.D. Mathew, High Temperature Design Curves for High Nitrogen Grades of 316LN Stainless Steel, Nucl. Eng. Des., 2010, 240, p 1363–1370

    Article  Google Scholar 

  17. A.C. Fischer-Cripps, Introduction to Contact Mechanics, Springer, New York, 2000

    Google Scholar 

  18. R.T. Shield, On the Plastic Flow of Metals Under Conditions of Axial Symmetry, Proc. R. Soc., 1956, 233, p 267–287

    Article  Google Scholar 

  19. G. Eason, R.T. Shield, and F. Angew, The Plastic Indentation of a Semi-infinite Solid by a Perfectly Rough Circular Punch, Math. M. Phy., 1960, 11, p 33–42

    Google Scholar 

  20. J.W. Harding and L.N. Sneddon, The Elastic Stresses Produced by the Indentation of the Plane Surface of a Semi-infinite Elastic Solid by a Rigid Punch, Proc. Cambridge Phil. Soc., 1945, 41, p 16–26

    Article  Google Scholar 

  21. H.Y. Yu, M.A. Imam, and B.B. Rath, Study of the Deformation Behaviour of Homogeneous Materials by Impression Tests, J. Mater. Sci., 1985, 20, p 636–642

    Article  Google Scholar 

  22. D. Tabor, A Simple Theory of Static and Dynamic Hardness, Proc. R. Soc. Lond. A., 1948, 192, p 247–274

    Article  Google Scholar 

  23. S. Timoshenko, Theory of Elasticity, McGraw Hill, New York, 1934, p 344

    Google Scholar 

  24. D.R. Hayhurst and J.T. Henderson, Creep Stress Redistribution in Notched Bars, Int. J. Mech. Sci., 1977, 19, p 133–146

    Article  Google Scholar 

  25. G. Eggeler and C. Wiesner, A Numerical Study of Parameters Controlling Stress Redistribution in Circular Notched Specimens During Creep, J. Strain. Anal., 1993, 28, p 13–22

    Article  Google Scholar 

  26. S. Goyal, K. Laha, C.R. Das, P. Panneerselvi, and M.D. Mathew, Finite Element Analysis of Effect of Tri-axial State of Stress on Creep Cavitation and Rupture Behavior of 2.25Cr-1Mo steel, Int. J. Mech. Sci., 2013, 75, p 233–243

    Article  Google Scholar 

  27. H.Y. Yu and J.C.M. Li, Computer Simulation of Impression Creep by the Finite Element Method, J. Mater. Sci., 1977, 12, p 2214–2222

    Article  Google Scholar 

  28. D. Pan and I. Dutta, A Mechanics-Induced Complication of Impression Creep and Its Solution: Application to Sn-3.5Ag Solder, Mater. Sci. Eng. A., 2004, 379, p 154–163

    Article  Google Scholar 

  29. G. Das, S. Ghosh, S. Ghosh, and R.N. Ghosh, Materials Characterization and Classification on the Basis of Materials Pile-up Surrounding the Indentation, Mater. Sci. Eng. A., 2005, 408, p 158–164

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Vani Shankar, Fatigue Studies Section, for EBSD analysis. The authors gratefully acknowledge the support and encouragement received from Dr. K. Laha, Head, Creep Studies Section; Dr. A. K. Bhaduri, Associate Director, Materials Development and Technology group; and Dr. T. Jayakumar, Director, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveena, Ganesh Kumar, J. & Mathew, M.D. Finite Element Analysis of Plastic Deformation During Impression Creep. J. of Materi Eng and Perform 24, 1741–1753 (2015). https://doi.org/10.1007/s11665-014-1225-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1225-z

Keywords

Navigation