Skip to main content
Log in

Impression Creep Behavior of 316LN Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Impression creep tests have been carried out at 923 K on 316LN SS containing 0.07, 0.14, and 0.22 wt.% nitrogen, under different applied stress levels. It was observed that the impression creep depth versus time curves were similar to the creep curves obtained from conventional uniaxial creep tests. The impression creep curves were characterized by a loading strain and primary and secondary creep stages similar to uniaxial creep curves. The tertiary stage observed in uniaxial creep curves was absent. The steady-state impression velocity was found to increase with increasing applied stress. The equivalent steady-state creep rates calculated from impression velocities were found to be in good agreement with the steady-state creep rates obtained from conventional uniaxial creep tests. Equivalence between applied stress and steady-state impression velocity with uniaxial creep stress and steady-state creep rate, respectively, has been established based on the laws of mechanics for time-dependent plasticity. It was found that impression velocity was sensitive to the variation in nitrogen content in the steel; impression velocity decreased with increasing nitrogen content, and the results obtained in this study were in agreement with those obtained from uniaxial creep tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O.D. Sherby and P.E. Armstrong, Prediction of Activation Energies for Creep and Self-Diffusion from Hot Hardness Data, Metall. Mater. Trans. B, 1971, 2(12), p 3479–3484

    Article  CAS  Google Scholar 

  2. H.D. Merchant, G.S. Murty, S.N. Bahadur, L.T. Dwivedi, and Y. Mehrotra, Hardness-Temperature Relationships in Metals, J. Mater. Sci., 1973, 8, p 437–442

    Article  CAS  Google Scholar 

  3. P.M. Sargent and M.F. Ashby, Indentation Creep, Mater. Sci. Technol., 1992, 8(7), p 594–601

    Article  CAS  Google Scholar 

  4. U.K. Viswanathan, T.R.G. Kutty, R. Keswani, and C. Ganguly, Evaluation of Hot Hardness and Creep of a 350 Grade Commercial Maraging Steel, J. Mater. Sci., 1996, 31, p 2705–2709

    Article  CAS  Google Scholar 

  5. J.C.M. Li and S.N. Chu, Impression Creep: A New Creep Test, J. Mater. Sci., 1977, 12, p 2200–2208

    Article  Google Scholar 

  6. J. Larsen-Badse, ORNL-TM-1862 Report, 1967

  7. S.H. Wang, Impression Creep Behaviour in Weldments, J. Mar. Sci. Technol., 1994, 2(1), p 17–24

    Google Scholar 

  8. S.N.G. Chu and J.C.M. Li, Impression Creep of β-Tin Single Crystals, J. Mater. Sci. Eng., 1979, 39, p 1–10

    Article  CAS  Google Scholar 

  9. D. Chiang and J.C.M. Li, Impression Creep of Lead, J. Mater. Res., 1994, 9(4), p 903–908

    Article  CAS  Google Scholar 

  10. G.S. Murty and D.H. Sastry, Impression Creep of Zinc and the Rate-Controlling Dislocation Mechanism of Plastic Flow at High Temperatures, Phys. Stat. Sol. A, 1982, 70, p 63–71

    Article  Google Scholar 

  11. G.S. Murty and D.H. Sastry, Impression Creep and High Temperature Deformation Mechanism in Cadmium, Trans. Indian Inst. Met., 1981, 34, p 195–201

    Google Scholar 

  12. R. Mahmudi and F. Kabirian, Impression Creep Behaviour of Cast AZ91 Magnesium Alloy, Metall. Mater. Trans. A, 2009, 40A, p 116–127

    Google Scholar 

  13. R. Mahmudi, Impression Creep Behaviour of Cast Pb-Sn Alloys, J. Alloys Compd., 2007, 427, p 124–129

    Article  CAS  Google Scholar 

  14. D.H. Sastry, Impression Creep Technique—An Overview, Mater. Sci. Eng. A, 2005, 409, p 67–75

    Article  Google Scholar 

  15. H.Y. Yu, M.A. Imam, and B.B. Rath, An Impression Test Method for Characterization of the Flow Behaviour of Superplastic Material, Mater. Sci. Eng., 1986, 79, p 125–132

    Article  CAS  Google Scholar 

  16. T.H. Hyde, W. Sun, and J.A. Williams, Creep Behaviour of Parent, Weld and HAZ Materials of New, Service-aged and Repaired 1/2Cr1/2Mo1/4V:2 1/4Cr1Mo Pipe Welds at 640 °C, Mat. High Temp., 1991, 16, p 117–129

    Article  Google Scholar 

  17. N.Q. Chinh, P. Tasnadi, A. Juhasz, P. Szommer, E. Szep-Kiss, and I. Kovacs, Investigation of the High Temperature Plasticity of Materials by Indentation Measurements, Key Eng. Mater., 1994, 97–98, p 159–168

    Article  Google Scholar 

  18. K.M. Fox, J.R. Hellmann, E.C. Dickey, J.D. Green, and D.L. Shellmann, Impression and Compression Creep of SiAlON Ceramics, J. Am. Ceram. Soc., 2006, 89(8), p 2555–2563

    Article  CAS  Google Scholar 

  19. M.A. Azeem, A.K. Mondal, and S. Kumar, Creep Behaviour of Short Fibre Reinforced QE22 Magnesium Alloy Using Impression Creep Test, Trans. Indian Inst. Met., 2005, 58(2–3), p 489–492

    CAS  Google Scholar 

  20. A.K. Mondal and S. Kumar, Creep Behaviour of AE42 Magnesium Alloy and Its Composites Using Impression Creep Technique, Mater. Sci. Forum, 2010, 638–642, p 1552–1557

    Article  Google Scholar 

  21. F. Yang and J.C.M. Li, Impression Creep of Thin Film by Vacancy Diffusion. 1. Straight Punch, J. Appl. Phys., 1993, 74, p 4382–4389

    Article  CAS  Google Scholar 

  22. H.Y. Yu and J.C.M. Li, Computer Simulation of Impression Creep by the Finite Element Method, J. Mater. Sci., 1977, 12, p 2214–2222

    Article  CAS  Google Scholar 

  23. E.C. Yu and J.C.M. Li, Impression Creep of LiF Single Crystals, Philos. Mag., 1977, 36(4), p 811–825

    Article  CAS  Google Scholar 

  24. D. Dorner, K. Roller, B. Skrotzki, B. Stockhert, and G. Eggeler, Creep of a TiAl Alloy: A Comparison of Indentation and Tensile Testing, Mater. Sci. Eng. A, 2003, 357A, p 346–354

    Google Scholar 

  25. L. Peng, F. Yang, J.-F. Nie, and J.C.M. Li, Impression Creep of a Mg-8Zn-4Al-0.5Ca Alloy, Mater. Sci. Eng. A, 2005, 410–411, p 42–47

    Google Scholar 

  26. P.S. Gondavarti and K. Linga Murty, Creep Anisotropy of Zinc Using Impression Tests, J. Mater. Sci. Lett., 1987, 6, p 456–458

    Article  Google Scholar 

  27. G. Nayyeri and R. Mahmudi, The Microstructure and Impression Creep Behaviour of Cast Mg-5Sn-xCa Alloys, Mater. Sci. Eng. A, 2010, 527, p 2087–2098

    Article  Google Scholar 

  28. T.H. Hyde, K.A. Yehia, and A.A. Becker, Interpretation of Impression Creep Data Using a Reference Stress Approach, Int. J. Mech. Sci., 1993, 35(6), p 451–462

    Article  Google Scholar 

  29. T.H. Hyde, K.A. Yehia, and A.A. Becker, Application of the Reference Stress Method for Interpreting Impression Creep Test Data, Mat. High Temp., 1995, 13(3), p 133–138

    CAS  Google Scholar 

  30. V. Ganesan, M.D. Mathew, P. Parameswaran, and K. Bhanu Sankara Rao, Creep Strengthening of Low Carbon Grade Type 316LN Stainless Steel by Nitrogen, Trans. Indian Inst. Met., 2010, 63(2–3), p 417–421

    Article  CAS  Google Scholar 

  31. M.D. Mathew, Evolution of Creep Resistant 316 Stainless Steel for Sodium Cooled Fast Reactor Applications, Trans. Indian Inst. Met., 2010, 63(2–3), p 151–158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. N.S. Thampi for the technical support in carrying out the experiments. The support and encouragement received from Dr. T. Jayakumar, Director, the Metallurgy and Materials Group and from Dr. Baldev Raj, Director, the Indira Gandhi Centre for Atomic Research are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Mathew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, M.D., Naveena & Vijayanand, D. Impression Creep Behavior of 316LN Stainless Steel. J. of Materi Eng and Perform 22, 492–497 (2013). https://doi.org/10.1007/s11665-012-0290-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0290-4

Keywords

Navigation