Skip to main content
Log in

Mechanical Properties, Microstructural Evolution, and the Effect of Friction on the Plastic Flow of the AISI 321 Austenitic Stainless Steel Tube During Cold Pilgering: An Experimental and Simulation Analysis

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The mechanical properties, microstructural evolution, and the effect of friction on the plastic flow of the AISI 321 austenitic stainless steel (ASS) tube were investigated during the cold pilger process. The elastic–plastic behavior of as-received tube was simulated by the Johnson-cook model. The model parameters were obtained by the compression and tensile tests. The mechanical properties of the material were examined by the tensile and microhardness tests. Based on the ring compression test results, three different situations for friction conditions were considered. The stress and strain states at these conditions were examined for the outer and inner surfaces of the tube. Numerical evaluation of plastic shearing due to the cold pilgering of the AISI321 tube was performed. The X-ray diffraction, ferrite scope tests, and optical microscope were also used for the microstructure evaluation and verification of the simulation results, respectively. The Latham-Cockcraft damage was calculated for different conditions by introducing the new subroutine, showing that it was strongly dependent on the friction conditions and the shear strain, εzr, respectively. It was shown that the friction coefficient of 0.3 resulted in the minimum damage of the tube and the different friction conditions between the two surfaces of the tube enhanced the damage function. Also, the strain induced ά-martensite increased the work-hardening capacity and affected the ductility of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.S. Ragger, J. Paal, B. Buchmayr: in The Making, Shaping and Treating of Steel, S.-E. Lundberg, ed., 11th edition, Association for Iron and Steel Technology, Warrendale, 2017.

  2. K. S. Ragger, R. Kaiser, J. Paal, R. Fluch and B. Buchmayr: Assoc. Int. Roll Pass Des. Roll. Mill Eng., 2014, vol. 75, pp. 28-41.

    Google Scholar 

  3. G. Kumar, S. Balo, A. Dhoble, J. Singh, R. Singh, D. Srivastava, G.K. Dey, I. Samajdar: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2844-57.

    Article  Google Scholar 

  4. H. Abe, M. Furugen: Mater. Transcr., 2010, vol. 51, pp. 1200-05.

    Article  CAS  Google Scholar 

  5. D. Pociecha, B. Boryczko, J. Osika, M. Mroczkowski: Arch. Civil Mech. Eng, 2014, vol. 14, pp. 376-82.

    Article  Google Scholar 

  6. J. L. Aubin, E. Girard, P. Montmitonnet: Zirconium in the Nuclear Industry: Tenth International Symposium, American Society for Testing and Materials, Philadelphia, 1994, pp. 245.

    Book  Google Scholar 

  7. J. Osika, H. Palkowski, K. Światkiwski, D. Pociecha, A. Kula: Arch. Metall. Mater., 2009, vol. 54, pp. 1239-51.

    Google Scholar 

  8. S. Mulot, A. Hacquin, P. Montmitonnet, J-L. Aubin: J. Mater. Process. Technol., 1996, vol. 60, pp. 505-12.

    Article  Google Scholar 

  9. P. Montmitonnet, R. Loge, M. Hamery, Y. Chastel, J-L. Doudoux: J. Mater. Process. Technol., 2002, vol. 125-126, pp. 814-20.

    Article  Google Scholar 

  10. B. Lodej, K. Niang, P. Montmitonnet, J.-L. Aubin: J. Mater. Process. Technol., 2006, vol. 177, pp. 188–91.

    Article  CAS  Google Scholar 

  11. G. Strickner, K. S. Ragger: Proceedings of the 14th International Conference on Metal Forming, AGH University of Science and Technology, 2012, pp. 71–74.

  12. A. Krause, R. Weirauch, G. Brauer, M. Stonis, B-A. Behrnes: Prod. Eng., 2015, vol. 9, pp. 41-49.

    Article  Google Scholar 

  13. M. Burgdorf: Werkzeugmaschinen und fertigunstechnik, Teil II: Umformtechnik, Industeri-Anzeiger, 1967, vol. 89, pp. 15-20.

    Google Scholar 

  14. V.A.M. Cristino, P.A.R. Rosa, P.A.F. Martins: Exp. Tech., 2015, vol. 39, pp. 47-56.

    Article  Google Scholar 

  15. G.R. Johnson, W. Cook: Eng. Fract. Mech., 1985, vol. 21, pp. 31–48.

    Article  Google Scholar 

  16. M. Haj, H. Mansouri, R. Vafaei, G.R. Ebrahimi, A. Kanani: Metal. Mater., 2013, vol. 20, pp. 529-34.

    CAS  Google Scholar 

  17. A.A. Tiamiyu, V. Tari, J.A. Szpunar, A.G. Odeshi, A.K. Khan: Int. J. Plast., 2018. https://doi.org/10.1016/j.ijplas.2018.03.014

    Article  Google Scholar 

  18. W. Zhang, J. Wu, Y. Wen, J. Ye, N. Li: J. Mater. Sci., 2010, vol. 45, pp. 3433-37.

    Article  CAS  Google Scholar 

  19. M.B. Leban, R. Tisu: Eng. Fail. Anal., 2013, vol. 33, pp. 430–38.

    Article  CAS  Google Scholar 

  20. C. Gauss, I.R.S. Filho, M.J.R. Sandim, P.A. Suzuki, A.J. Ramirez, H.R.Z. Sandim: Mater. Sci. Eng. A, 2016, vol. 651, pp. 507-16.

    Article  CAS  Google Scholar 

  21. K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, Y. Bréchet: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 873–81.

    Article  Google Scholar 

  22. M. Okayasu, H. Fukui, H. Ohfuji, T. Shiraishi: J. Mater. Sci., 2013, vol. 48, pp. 6157-66.

    Article  CAS  Google Scholar 

  23. M. Shirdel, H. Mirzadeh, M.H. Parsa: Mater. Charact., 2015, vol. 103, pp. 150–61.

    Article  CAS  Google Scholar 

  24. B. F. Wang, Z. L. Liu, X. Y. Wang, Z. Z. Li: Mater. Sci. Eng. A, 2014, vol. 610, pp. 301–08.

    Article  CAS  Google Scholar 

  25. R. K. C. Nkhoma, C. W. Siyasiya, W. E. Stumpf: J. Alloy Compd., 2014, vol. 595, pp. 103–12.

    Article  CAS  Google Scholar 

  26. T.S. Byun: Acta Mater, 2003, vol. 51, pp. 3063-71.

    Article  CAS  Google Scholar 

  27. E. Girard, R. Guillen, P. Weisbecker, M. Francois: J. Nucl. Mater., 2001, vol. 294, 330-38.

    Article  CAS  Google Scholar 

  28. M.G. Cockcraft, D.J. Latham: J. Inst. Metal 1968, vol. 96, pp. 33-39.

    Google Scholar 

  29. E. Vanegas-Maquez, K. Mocellin, L. Toualbi, Y. de Carlan, R.E. Loge: J. Nucl. Mater., 2012, vol. 420, pp. 479-90.

    Article  Google Scholar 

  30. A. Gaillac, C. Lemaignan, P. Barberis: J. ASTM Int., 2011, vol. 8, pp. 244-68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Mohammad Sharifi.

Additional information

Manuscript submitted July 11, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musazadeh, M.H., Vafaei, R., Mohammad Sharifi, E. et al. Mechanical Properties, Microstructural Evolution, and the Effect of Friction on the Plastic Flow of the AISI 321 Austenitic Stainless Steel Tube During Cold Pilgering: An Experimental and Simulation Analysis. Metall Mater Trans B 49, 3030–3042 (2018). https://doi.org/10.1007/s11663-018-1428-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1428-z

Keywords

Navigation