Skip to main content

Advertisement

Log in

Simple and Cost-Effective Synthesis of Activated Carbon Anchored by Functionalized Multiwalled Carbon Nanotubes for High-Performance Supercapacitor Electrodes with High Energy Density and Power Density

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We prepared a composite using activated carbon and functionalised multiwalled carbon nanotubes by a simple and cost-effective process and investigated its use for supercapacitor application. The electrochemical performance of the prepared composite has been investigated by galvanostatic charge-discharge (GCD) and cyclic voltammetry (CV) measurements in a three-electrode set-up. The composite resulted in maximum specific capacitance of 395 F/g at 5 mV/s as measured by CV, and of 372 F/g at 60 A/g by GCD measurement in 3M KOH aqueous electrolyte. High power and energy density of 75.27 kW/kg and 25.31 W·h/kg at 60 A/g have been respectively obtained for composite using GCD measurement. The long-term charge-discharge stability has been performed for the composite electrodes, and it is observed that 89% of capacitance is retained even after 5000 cycles. The achieved results suggest that the prepared activated carbon/multiwalled carbon nanotube composite can be a potential electrode material in high-performance supercapacitors for energy storage applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Pu, J. Fu, Y. Liao, L. Ge, Y. Zhou, S. Zhang, S. Zhao, X. Liu, X. Hu, K. Liu, and J. Chen, Adv. Mater., 2020, 32, p 1907307.

    Article  CAS  Google Scholar 

  2. S. Pu, Y. Liao, K. Chen, J. Fu, S. Zhang, L. Ge, G. Conta, S. Bouzarif, T. Cheng, X. Hu, K. Liu, and J. Chen, Nano Lett., 2020, 20, p 3791.

    Article  CAS  Google Scholar 

  3. G. Chen, Y. Li, M. Bick, and J. Chen, Chem. Rev., 2020, 120, p 3668.

    Article  CAS  Google Scholar 

  4. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, and Z.L. Wang, Nat. Energy, 2016, 1, p 16138.

    Article  CAS  Google Scholar 

  5. W. Deng, Y. Zhou, X. Zhao, S. Zhang, Y. Zou, J. Xu, M.H. Yeh, H. Guo, and J. Chen, ACS Nano, 2020, 14, p 9050.

    Article  CAS  Google Scholar 

  6. J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang, T.C. Hou, and Z.L. Wang, Adv. Mater., 2013, 25, p 6094.

    Article  CAS  Google Scholar 

  7. Y. Zhou, W. Deng, J. Xu, and J. Chen, Cell Rep. Phys. Sci., 2020, 1, p 100142.

    Article  Google Scholar 

  8. H. Zhang, L. Zhang, J. Chen, H. Su, F. Liu, and W. Yang, J. Power Sources, 2016, 315, p 120.

    Article  CAS  Google Scholar 

  9. H. Su, H. Huang, H. Zhang, X. Chu, B. Zhang, B. Gu, X. Zheng, S. Wu, W. He, C. Yan, J. Chen, and W. Yang, ACS Appl. Energy Mater., 2018, 8, p 3544.

    Article  Google Scholar 

  10. D. Chu, A. Nashalian, Y. Zhou, X. Zhao, D. Guo, R. He, W. Chen, and J. ChenACS Appl. Energy Mater., 2020, 8, p 7246.

    Article  Google Scholar 

  11. S.M. Xu, X. Liang, X.Y. Wu, S.L. Zhao, J. Chen, K.X. Wang, and J.S. Chen, Nat. Commun., 2019, 10, p 5810.

    Article  CAS  Google Scholar 

  12. G. Zan, T. Wu, P. Hu, Y. Zhou, S. Zhao, S. Xu, J. Chen, Y. Cui, and Q. Wu, Energy Storage Mater., 2020, 28, p 82.

    Article  Google Scholar 

  13. J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L.Q. Chen, J. Qin, and Y. Cui, Nat. Nanotechnol., 2019, 14, p 705.

    Article  CAS  Google Scholar 

  14. H. Yin, K.S. Hui, X. Zhao, S. Mei, X. Lv, K.N. Hui, J. Chen, and A.C.S. Appl, H. Yin, K.S. Hui, X. Zhao, S. Mei, X. Lv, K.N. Hui, and J. Chen, ACS Appl Energy Mater., 2020, 7, p 6897.

    Article  Google Scholar 

  15. E.E. Miller, Y. Hua, and F.H. Tezel, J. Energy Storage, 2018, 20, p 30.

    Article  Google Scholar 

  16. J. Ling, H. Zou, W. Yang, W. Chen, K. Lei, and S. Chen, J. Energy Storage, 2018, 20, p 92.

    Article  Google Scholar 

  17. D. Ibrahim, Abouelamaiem, M. J. M. López, G. He, D. Patel, T.P. Neville, T. Neville, and I.P. Parkin, J. Energy Storage 19, 337 (2018).

  18. M. Astaneh, R. Dufo-López, R. Roshandel, F. Golzar, and J.L. Bernal-Agustin, J. Energy Storage, 2018, 17, p 93.

    Article  Google Scholar 

  19. D. Schmidt, M. Kamlah, and V. Knoblauch, J. Energy Storage, 2018, 17, p 213.

    Article  Google Scholar 

  20. V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.S. Nardekar, and S.J. Kim, Nano Energy., 2019, 57, p 307.

    Article  CAS  Google Scholar 

  21. B.V.R.S. Subramanyam, P.C. Mahakul, K. Sa, J. Raiguru, I. Alam, S. Das, M. Mondal, S. Subudhi, and P. Mahanandia, Sol. Energy, 2019, 186, p 146.

    Article  CAS  Google Scholar 

  22. M. Mastragostino, and F. Soavi, J. Power Sources, 2007, 174, p 89.

    Article  CAS  Google Scholar 

  23. Y.J. Kim, C.M. Yang, K.C. Park, K. Kaneko, Y.A. Kim, M. Noguchi, T. Fujino, S. Oyama, and M. Endo, Chemsuschem, 2012, 5, p 535.

    Article  CAS  Google Scholar 

  24. K. Naoi, S. Ishimoto, J. Miyamoto, and W. Naoi, Energy Environ. Sci., 2012, 5, p 9363.

    Article  CAS  Google Scholar 

  25. F. Zhang, T.F. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, and Y.S. Chen, Energy Environ. Sci., 2013, 6, p 1623.

    Article  CAS  Google Scholar 

  26. M.D. Stoller, and R.S. Ruoff, Energy Environ. Sci., 2010, 3, p 1294.

    Article  CAS  Google Scholar 

  27. C. Zheng, W.Z. Qian, C.J. Cui, Q. Zhang, Y.G. Jin, M.Q. Zhao, P.H. Tan, and F. Wei, Carbon, 2012, 50, p 5167.

    Article  CAS  Google Scholar 

  28. A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M. Yumura, S. Lijima, and K. Hata, Adv. Mater., 2010, 22, p 235.

    Article  Google Scholar 

  29. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff, Science, 2011, 332, p 1537.

    Article  CAS  Google Scholar 

  30. C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Nano Lett., 2010, 10, p 4863.

    Article  CAS  Google Scholar 

  31. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, and Y.S. Chen, J. Phys. Chem. C, 2009, 113, p 13103.

    Article  CAS  Google Scholar 

  32. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, and R.S. Ruoff, Nano Lett., 2008, 8, p 3498.

    Article  CAS  Google Scholar 

  33. D.W. Wang, F. Li, J.P. Zhao, W.C. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, and H.M. Cheng, ACS Nano, 2009, 3, p 1745.

    Article  CAS  Google Scholar 

  34. Y.Q. Sun, Q.O. Wu, and G.Q. Shi, Energy Environ. Sci., 2011, 4, p 1113.

    Article  CAS  Google Scholar 

  35. M. Pumera, Energy Environ. Sci., 2011, 4, p 668.

    Article  CAS  Google Scholar 

  36. C. Peng, S.W. Zhang, X.H. Zhou, and G.Z. Chen, Energy Environ. Sci., 2010, 3, p 1499.

    Article  Google Scholar 

  37. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, Nano Lett., 2012, 12, p 1690.

    Article  CAS  Google Scholar 

  38. S. Biswas, and L.T. Drzal, Chem. Mater., 2010, 22, p 5667.

    Article  CAS  Google Scholar 

  39. J.J. Xu, K. Wang, S.Z. Zu, B.H. Han, and Z.X. Wei, ACS Nano, 2010, 4, p 5019.

    Article  CAS  Google Scholar 

  40. A.V. Murgan, T. Muraliganth, and A. Manthiram, Chem. Mater., 2009, 21, p 5004.

    Article  Google Scholar 

  41. Z. L. L and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

  42. P. L. Taberna, G. Chevallier, P. Simon, D. Ple´e, and T. Aubert, Mater Res Bull 41, 478 (2006).

  43. D. Schopf, and M. Es-Souni, Appl. Phys. A, 2016, 122, p 203.

    Article  Google Scholar 

  44. A.S.D. Sandanayaka, E. Maligaspe, T. Hasobe, O. Ito, and F. D’Souza, Chem. Commun., 2010, 46, p 8749.

    Article  CAS  Google Scholar 

  45. J. Ding, Z. Li, J. Lefebvre, F. Cheng, G. Dubey, S. Zou, P. Finnie, A. Hrdina, L. Scoles, G.P. Lopinski, C.T. Kingston, B. Simard, and P.R.L. Malenfant, Nanoscale, 2014, 6, p 2328.

    Article  CAS  Google Scholar 

  46. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.C. Qin, Phys. Chem. Chem. Phys., 2011, 13, p 17615.

    Article  CAS  Google Scholar 

  47. C. Moreno-Castilla, M. A. Ferro-Garcia, J. P. Joly, I. Bautista Toledo, F. Carrasco-Marin, and J. Rivera-Utrilla, Langmuir 11, 4386 (1995).

  48. P. Mahanandia, P.N. Vishwakarma, K.K. Nanda, V. Prasad, S.V. Subramanyam, S.K. Dev, and P.V. Satyam, Mater. Res. Bull., 2006, 41, p 2311.

    Article  CAS  Google Scholar 

  49. P. Mahanandia, P.N. Vishwakarma, K.K. Nanda, V. Prasad, K. Barai, A.K. Mondal, and S. Sarangi, Solid State Commun., 2008, 145, p 143.

    Article  CAS  Google Scholar 

  50. S. Liang, G. Li1, and R. Tian, J Mater Sci 51, 3513 (2016).

  51. V.T. Le, C.L. Ngo, Q.T. Le, T.T. Ngo, D.N. Nguyen, and M.T. Vu, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2013, 4, p 035017.

    CAS  Google Scholar 

  52. Y. Xu, X. Huang, Z. Lin, X. Zhong, Y. Huang, and X. Duan, Nano Res., 2013, 6, p 65.

    Article  CAS  Google Scholar 

  53. S. Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S.K. Jeong, and A.N. Grace, Sci. Rep., 2019, 9, p 16315.

    Article  Google Scholar 

  54. Z. Xie, W. Guan, F. Ji, Z. Song, and Y. Zhao, J. Chem., 2014, 9, p 491912.

    Google Scholar 

  55. G.I. Danmaliki, and T.A. Saleh, Chem. Eng. J., 2017, 307, p 914.

    Article  CAS  Google Scholar 

  56. Y.A. Kim, T. Hayashi, K. Osawa, M.S. Dresselhaus, and M. Endo, Chem. Phys. Lett., 2003, 380, p 319.

    Article  CAS  Google Scholar 

  57. R. Andrews, D. Jacques, D. Qian, and E.C. Dickey, Carbon, 2001, 39, p 1681.

    Article  CAS  Google Scholar 

  58. L. Zhang, J. Yang, X. Wang, B. Zhao, and G. Zheng, Nanoscale Res Lett., 2014, 9, p 448.

    Article  Google Scholar 

  59. W. Liu, X. Yan, J. Langa, and Q. Xue, J. Mater. Chem., 2012, 22, p 8853.

    Article  CAS  Google Scholar 

  60. C.S. Dai, P.Y. Chien, J.Y. Lin, S.W. Chou, W.K. Wu, P.H. Li, K.Y. Wu, and T.W. Lin ACS Appl Mater. Interfaces, 2013, 5, p 12168.

    Article  CAS  Google Scholar 

  61. Y. Gogotsi, and R.M. Penner, ACS Nano, 2018, 12, p 2081.

    Article  CAS  Google Scholar 

  62. S. Chen, J. Zhu, H. Zhou, and X. Wang, RSC Adv., 2011, 1, p 484.

    Article  CAS  Google Scholar 

  63. C. Zheng, X. Zhou, H. Cao, G. Wang, and Z. Liu, J. Power Sources, 2014, 258, p 290.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Ministry of Human Resource Development (MHRD), Government of India, for financial support, and also thanks to IIT Bhubaneswar for providing the facility to perform CV and GCD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitamber Mahanandia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M., Subudhi, S., Alam, I. et al. Simple and Cost-Effective Synthesis of Activated Carbon Anchored by Functionalized Multiwalled Carbon Nanotubes for High-Performance Supercapacitor Electrodes with High Energy Density and Power Density. J. Electron. Mater. 50, 2879–2889 (2021). https://doi.org/10.1007/s11664-021-08796-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08796-w

Keywords

Navigation