Skip to main content
Log in

Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recent efforts have focused on the fabrication and application of three-dimensional (3-D) nanoarchitecture electrodes, which can exhibit excellent electrochemical performance. Herein, a novel strategy towards the design and synthesis of size- and thickness-tunable two-dimensional (2-D) MnO2 nanosheets on highly conductive one-dimensional (1-D) backbone arrays has been developed via a facile, one-step enhanced chemical bath deposition (ECBD) method at a low temperature (∼50 °C). Inclusion of an oxidizing agent, BrO3 , in the solution was crucial in controlling the heterogeneous nucleation and growth of the nanosheets, and in inducing the formation of the tailored and uniformly arranged nanosheet arrays. We fabricated supercapacitor devices based on 3-D MnO2 nanosheets with conductive Sb-doped SnO2 nanobelts as the backbone. They achieved a specific capacitance of 162 F·g−1 at an extremely high current density of 20 A·g−1, and good cycling stability that shows a capacitance retention of ≈92% of its initial value, along with a coulombic efficiency of almost 100% after 5,000 cycles in an aqueous solution of 1 M Na2SO4. The results were attributed to the unique hierarchical structures, which provided a short diffusion path of electrolyte ions by means of the 2-D sheets and direct electrical connections to the current collector by 1-D arrays as well as the prevention of aggregation by virtue of the well-aligned 3-D structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zordan, T. A.; Hepler, L. G. Thermochemistry and oxidation potentials of manganese and its compounds. Chem. Rev. 1968, 68, 737–745.

    Article  Google Scholar 

  2. Cheng, F. Y.; Zhao, J. Z.; Song, W.; Li, C. S.; Ma, H.; Chen, J.; Shen, P. W. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 2006, 45, 2038–2044.

    Article  Google Scholar 

  3. Subramanian, V.; Zhu, H. W.; Wei, B. Q. Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem. Phys. Lett. 2008, 453, 242–249.

    Article  Google Scholar 

  4. Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664–2668.

    Article  Google Scholar 

  5. Débart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 4597–4600.

    Article  Google Scholar 

  6. Li, W. N.; Yuan, J. K.; Shen, X. F.; Gomez-Mower, S.; Xu, L. P.; Sithambaram, S.; Aindow, M.; Suib, S. L. Hydrothermal synthesis of structure-and shape-controlled manganese oxide octahedral molecular sieve nanomaterials. Adv. Funct. Mater. 2006, 16, 1247–1253.

    Article  Google Scholar 

  7. Long, J. W.; Rhodes, C. P.; Young, A. L.; Rolison, D. R. Ultrathin, protective coatings of poly (o-phenylenediamine) as electrochemical proton gates: Making mesoporous MnO2 nanoarchitectures stable in acid electrolytes. Nano Lett. 2003, 3, 1155–1161.

    Article  Google Scholar 

  8. Luo, X. L.; Morrin, A.; Killard, A. J.; Smyth, M. R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanal. 2006, 18, 319–326.

    Article  Google Scholar 

  9. Sayle, T. X.; Maphanga, R. R.; Ngoepe, P. E.; Sayle, D. C. Predicting the electrochemical properties of MnO2 nanomaterials used in rechargeable Li batteries: Simulating nanostructure at the atomistic level. J. Am. Chem. Soc. 2009, 131, 6161–6173.

    Article  Google Scholar 

  10. Ghodbane, O.; Pascal, J. L.; Favier, F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 2009, 1, 1130–1139.

    Article  Google Scholar 

  11. Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.

    Article  Google Scholar 

  12. Brousse, T.; Toupin, M.; Dugas, R.; Athouël, L.; Crosnier, O.; Bélanger, D. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 2006, 153, A2171–A2180.

    Article  Google Scholar 

  13. Xu, C. J.; Du, H. D.; Li, B. H.; Kang, F. Y.; Zeng, Y. Q. Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline-earth cations. J. Electrochem. Soc. 2009, 156, A435–A441.

    Article  Google Scholar 

  14. Xiong, Y. J.; Xie, Y.; Li, Z. Q.; Wu, C. Z. Growth of well-aligned γ-MnO2monocrystalline nanowires through a coordination-polymer-precursor route. Chem.-Eur. J. 2003, 9, 1645–1651.

    Article  Google Scholar 

  15. Jones, D. J.; Wortham, E.; Rozière, J.; Favier, F.; Pascal, J. L.; Monconduit, L. Manganese oxide nanocomposites: Preparation and some electrochemical properties. J. Phys. Chem. Solids 2004, 65, 235–239.

    Article  Google Scholar 

  16. Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 2010, 4, 3889–3896.

    Article  Google Scholar 

  17. Dong, X. P.; Shen, W. H.; Gu, J. L.; Xiong, L. M.; Zhu, Y. F.; Li, Z.; Shi, J. L. MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J. Phys. Chem. B 2006, 110, 6015–6019.

    Article  Google Scholar 

  18. He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182.

    Article  Google Scholar 

  19. Jiang, H.; Li, C. Z.; Sun, T.; Ma, J. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 2012, 4, 807–812.

    Article  Google Scholar 

  20. Lei, Z. B.; Zhang, J. T.; Zhao, X. S. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J. Mater. Chem. 2012, 22, 153–160.

    Article  Google Scholar 

  21. Zheng, H. J.; Wang, J. X.; Jia, Y.; Ma, C. A. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. J. Power Sources 2012, 216, 508–514.

    Article  Google Scholar 

  22. Zhou, R. F.; Meng, C. Z.; Zhu, F.; Li, Q. Q.; Liu, C. H.; Fan, S. S.; Jiang, K. L. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology 2010, 21, 345701.

    Article  Google Scholar 

  23. Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822–2830.

    Article  Google Scholar 

  24. Wu, Z. S.; Ren, W. C.; Wang, D. W.; Li, F.; Liu, B. L.; Cheng, H. M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010, 4, 5835–5842.

    Article  Google Scholar 

  25. Yu, G. H.; Hu, L. B; Liu, N.; Wang, H. L.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11, 4438–4442.

    Article  Google Scholar 

  26. Gao, H. C.; Xiao, F.; Ching, C. B.; Duan, H. W. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces 2012, 4, 2801–2810.

    Article  Google Scholar 

  27. Mao, L.; Zhang, K.; Chan, H. S. O.; Wu, J. S. Nanostructured MnO2/graphene composites for supercapacitor electrodes: The effect of morphology, crystallinity and composition. J. Mater. Chem. 2012, 22, 1845–1851.

    Article  Google Scholar 

  28. Yan, J.; Khoo, E.; Sumboja, A.; Lee, P. S. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 2010, 4, 4247–4255.

    Article  Google Scholar 

  29. Bao, L. H.; Zang, J. F.; Li, X. D. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 2011, 11, 1215–1220.

    Article  Google Scholar 

  30. He, S. J.; Chen, W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J. Power Sources 2014, 262, 391–400.

    Article  Google Scholar 

  31. He, S. J.; Hu, C. X.; Hou, H. Q.; Chen, W. Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J. Power Sources 2014, 246, 754–761.

    Article  Google Scholar 

  32. Omomo, Y.; Sasaki, T.; Wang, L. Z.; Watanabe, M. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 2003, 125, 3568–3575.

    Article  Google Scholar 

  33. Yang, X. J.; Makita, Y.; Liu, Z. H.; Sakane, K.; Ooi, K. Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals. Chem. Mater. 2004, 16, 5581–5588.

    Article  Google Scholar 

  34. Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 2011, 133, 20168–20171.

    Article  Google Scholar 

  35. Sun, X.; Li, Q.; Lu, Y. N.; Mao, Y. B. Three-dimensional ZnO@MnO2 core@shell nanostructures for electrochemical energy storage. Chem. Commun. 2013, 49, 4456–4458.

    Article  Google Scholar 

  36. Zhao, G. X.; Li, J. X.; Jiang, L.; Dong, H. L.; Wang, X. K.; Hu, W. P. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 2012, 3, 433–437.

    Article  Google Scholar 

  37. Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.

    Article  Google Scholar 

  38. Liu, J. P.; Jiang, J.; Cheng, C. W.; Li, H. X.; Zhang, J. X.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076–2081.

    Article  Google Scholar 

  39. Tian, W.; Wang, X.; Zhi, C. Y.; Zhai, T. Y.; Liu, D. Q.; Zhang, C.; Golberg, D.; Bando, Y. Ni(OH)2 nanosheet@Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energ. 2013, 2, 754–763.

    Article  Google Scholar 

  40. Yang, Q.; Lu, Z. Y.; Chang, Z.; Zhu, W.; Sun, J. Q.; Liu, J. F.; Sun, X. M.; Duan, X. Hierarchical Co3O4 nanosheet@ nanowire arrays with enhanced pseudocapacitive performance. RSC Adv. 2012, 2, 1663–1668.

    Article  Google Scholar 

  41. Unuma, H.; Kanehama, T.; Yamamoto, K.; Watanabe, K.; Ogata, T.; Sugawara, M. Preparation of thin films of MnO2 and CeO2 by a modified chemical bath (oxidative-soak-coating) method. J. Mater. Sci. 2003, 38, 255–259.

    Article  Google Scholar 

  42. Park, S.; Lee, S.; Seo, S. W.; Seo, S. D.; Lee, C. W.; Kim, D.; Kim, D. W.; Hong, K. S. Tailoring nanobranches in three-dimensional hierarchical rutile heterostructures: A case study of TiO2-SnO2. CrystEngComm 2013, 15, 2939–2948.

    Article  Google Scholar 

  43. Park, S.; Seo, S. D.; Lee, S.; Seo, S. W.; Park, K. S.; Lee, C. W.; Kim, D. W.; Hong, K. S. Sb:SnO2@TiO2 heteroepitaxial branched nanoarchitectures for Li ion battery electrodes. J. Phys. Chem. C 2012, 116, 21717–21726.

    Article  Google Scholar 

  44. Julien, C.; Massot, M.; Rangan, S.; Lemal, M.; Guyomard, D. Study of structural defects in γ-MnO2 by Raman spectroscopy. J. Raman Spectrosc. 2002, 33, 223–228.

    Article  Google Scholar 

  45. Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Press: New York, 1999.

    Book  Google Scholar 

  46. Devaraj, S.; Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 2008, 112, 4406–4417.

    Article  Google Scholar 

  47. Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190.

    Article  Google Scholar 

  48. Pang, S. C.; Anderson, M. A.; Chapman, T. W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 2000, 147, 444–450.

    Article  Google Scholar 

  49. Qu, Q. T.; Zhang, P.; Wang, B.; Chen, Y. H.; Tian, S.; Wu, Y. P.; Holze, R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009, 113, 14020–14027.

    Article  Google Scholar 

  50. Li, S. H.; Qi, L.; Lu, L. H.; Wang, H. Y. Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC Adv. 2012, 2, 3298–3308.

    Article  Google Scholar 

  51. Kim, J. S.; Shin, S. S.; Han, H. S.; Oh, L. S.; Kim, D. H.; Kim, J. H.; Hong, K. S.; Kim, J. Y. 1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities. ACS Appl. Mater. Interfaces 2014, 6, 268–274.

    Article  Google Scholar 

  52. Xie, X. Y.; Zhang, C.; Wu, M. B.; Tao, Y.; Lv, W.; Yang, Q. H. Porous MnO2 for use in a high performance supercapacitor: Replication of a 3D graphene network as a reactive template. Chem. Commun. 2013, 49, 11092–11094.

    Article  Google Scholar 

  53. Yeager, M.; Du, W. X.; Si, R.; Su, D.; Marinković, N.; Teng, X. W. Highly efficient K0.15MnO2 birnessite nanosheets for stable pseudocapacitive cathodes. J. Phys. Chem. C 2012, 116, 20173–20181.

    Article  Google Scholar 

  54. Li, W. Y.; Liu, Q.; Sun, Y. G.; Sun, J. Q.; Zou, R. J.; Li, G.; Hu, X. H.; Song, G. S.; Ma, G. X.; Yang, J. M. et al. MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. J. Mater. Chem. 2012, 22, 14864–14867.

    Article  Google Scholar 

  55. Huang, M.; Zhang, Y. X.; Li, F.; Zhang, L. L.; Ruoff, R. S.; Wen, Z. Y.; Liu, Q. Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors. Sci. Rep. 2014, 4, 3878.

    Google Scholar 

  56. Xu, C. L.; Zhao, Y. Q.; Yang, G. W.; Li, F. S.; Li, H. L. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chem. Commun. 2009, 48, 7575–7577.

    Article  Google Scholar 

  57. Feng, Z. P.; Li, G. R.; Zhong, J. H.; Wang, Z. L.; Ou, Y. N.; Tong, Y. X. MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties. Electrochem. Commun. 2009, 11, 706–710.

    Article  Google Scholar 

  58. Subramanian, V.; Zhu, H. W.; Wei, B. Q. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J. Power Sources 2006, 159, 361–364.

    Article  Google Scholar 

  59. Xiao, W.; Xia, H.; Fuh, J. Y. H.; Lu, L. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources 2009, 193, 935–938.

    Article  Google Scholar 

  60. Xu, M.; Kong, L.; Zhou, W.; Li, H. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 2007, 111, 19141–19147.

    Article  Google Scholar 

  61. Jiang, R. R.; Huang, T.; Liu, J. L.; Zhuang, J. H.; Yu, A. S. A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode. Electrochim. Acta 2009, 54, 3047–3052.

    Article  Google Scholar 

  62. Vargas, O. A.; Caballero, A.; Hernán, L.; Morales, J. Improved capacitive properties of layered manganese dioxide grown as nanowires. J. Power Sources 2011, 196, 3350–3354.

    Article  Google Scholar 

  63. Sung, D. Y.; Kim, I. Y.; Kim, T. W.; Song, M. S.; Hwang, S. J. Room temperature synthesis routes to the 2D nanoplates and 1D nanowires/nanorods of manganese oxides with highly stable pseudocapacitance behaviors. J. Phys. Chem. C 2011, 115, 13171–13179.

    Article  Google Scholar 

  64. Subramanian, V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214.

    Article  Google Scholar 

  65. Zhu, G.; Li, H. J.; Deng, L. J.; Liu, Z. H. Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater. Lett. 2010, 64, 1763–1765.

    Article  Google Scholar 

  66. Ragupathy, P.; Park, D. H.; Campet, G.; Vasan, H. N.; Hwang, S. J.; Choy, J. H.; Munichandraiah, N. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J. Phys. Chem. C 2009, 113, 6303–6309.

    Article  Google Scholar 

  67. Yuan, J. Q.; Liu, Z. H.; Qiao, S. F.; Ma, X. R.; Xu, N. C. Fabrication of MnO2-pillared layered manganese oxide through an exfoliation/reassembling and oxidation process. J. Power Sources 2009, 189, 1278–1283.

    Article  Google Scholar 

  68. Yuan, C. Z.; Gao, B.; Su, L. H.; Zhang, X. G. Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors. J. Colloid Interface Sci. 2008, 322, 545–550.

    Article  Google Scholar 

  69. Xu, M. W.; Jia, W.; Bao, S. J.; Su, Z.; Dong, B. Novel mesoporous MnO2 for high-rate electrochemical capacitive energy storage. Electrochim. Acta 2010, 55, 5117–5122.

    Article  Google Scholar 

  70. He, X. X.; Yang, M. Y.; Ni, P.; Li, Y.; Liu, Z. H. Rapid synthesis of hollow structured MnO2 microspheres and their capacitance. Colloid Surf. A-Physicochem. Eng. Asp. 2010, 363, 64–70.

    Article  Google Scholar 

  71. Yu, P.; Zhang, X.; Chen, Y.; Ma, Y. W. Self-template route to MnO2 hollow structures for supercapacitors. Mater. Lett. 2010, 64, 1480–1482.

    Article  Google Scholar 

  72. Tang, N.; Tian, X. K.; Yang, C.; Pi, Z. B. Facile synthesis of α-MnO2 nanostructures for supercapacitors. Mater. Res. Bull. 2009, 44, 2062–2067.

    Article  Google Scholar 

  73. Peng, Y. T.; Chen, Z.; Wen, J.; Xiao, Q. F.; Weng, D.; He, S. Y.; Geng, H. B.; Lu, Y. F. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res. 2011, 4, 216–225.

    Article  Google Scholar 

  74. Meher, S. K.; Rao, G. R. Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 2011, 115, 15646–15654.

    Article  Google Scholar 

  75. Meher, S. K.; Justin, P.; Rao, G. R. Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis. Nanoscale 2011, 3, 683–692.

    Article  Google Scholar 

  76. Shim, H. W.; Lim, A. H.; Kim, J. C.; Jang, E.; Seo, S. D.; Lee, G. H.; Kim, T. D.; Kim, D. W. Scalable one-pot bacteria-templating synthesis route toward hierarchical, porous-Co3O4 superstructures for supercapacitor electrodes. Sci. Rep. 2013, 3, 2325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wan Kim.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Shim, HW., Lee, C.W. et al. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 8, 990–1004 (2015). https://doi.org/10.1007/s12274-014-0581-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0581-1

Keywords

Navigation