Skip to main content

Advertisement

Log in

Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphene-carbon nanofiber/MnO2 nanocomposite paper (GMP) is prepared via a simple chemical reaction between KMnO4 and carbon materials in acidic solution, in which MnO2 nanosheets are uniformly deposited on the graphene-carbon nanofiber paper. Owing to its freestanding structure, GMP is directly used as an electrode in the electrochemical tests without addition of any binders or conductive additives. Encouragingly, GMP exhibits an excellent capacitive performance with a high specific capacitance of 298.2 F g−1 at 1 A g−1 in 1 M Na2SO4 electrolyte. Meanwhile, this composite paper can withstand high scan rate loads without a large decrease of capacitance, the specific capacitance can be remaining at 370.4 F g−1 even at 300 mV s−1. In the cycling test, the composite paper presents an outstanding stability with 95.7 % capacitance retention after 3000 cycles. Additionally, the asymmetric supercapacitor is fabricated based on GMP electrode, it not only shows a high operating voltage of 2.0 V but also exhibits a high energy density of 23.0 Wh kg−1 at 450.8 W kg−1. Therefore, this kind of composite paper would be promising as electrode materials for flexible and high performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  3. Wang J-G, Yang Y, Huang Z-H, Kang F (2012) Synthesis and electrochemical performance of MnO2/CNTs-embedded carbon nanofibers nanocomposites for supercapacitors. Electrochim Acta 75:213–219

    Article  CAS  Google Scholar 

  4. Wu Y, Liu S, Wang H, Wang X, Zhang X, Jin G (2013) A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim Acta 90:210–218

    Article  CAS  Google Scholar 

  5. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833

    Article  CAS  Google Scholar 

  6. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925

    Article  CAS  Google Scholar 

  7. Wang J-G, Yang Y, Huang Z-H, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 61:190–199

    Article  CAS  Google Scholar 

  8. Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5:8904–8913

    Article  CAS  Google Scholar 

  9. Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896

    Article  CAS  Google Scholar 

  10. Jaidev RI, Jafri AK, Mishra S (2011) Ramaprabhu, polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J Mater Chem 21:17601

    Article  CAS  Google Scholar 

  11. Jiang H, Ma J, Li C (2012) Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. J Mater Chem 22:16939

    Article  CAS  Google Scholar 

  12. Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139

    Article  CAS  Google Scholar 

  13. Hao Q, Wang J, Xu C (2014) Facile preparation of Mn3O4 octahedra and their long-term cycle life as an anode material for Li-ion batteries. J Mater Chem A 2:87–93

    Article  CAS  Google Scholar 

  14. Perera SD, Patel B, Nijem N, Roodenko K, Seitz O, Ferraris JP, Chabal YJ, Balkus KJ (2011) Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors. Adv Energy Mater 1:936–945

    Article  CAS  Google Scholar 

  15. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  16. Xia C, Ning W, Lin G (2009) Facile synthesis of novel MnO2 hierarchical nanostructures and their application to nitrite sensing. Sensors Actuators B Chem 137:710–714

    Article  CAS  Google Scholar 

  17. Li X, Wei B (2012) Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films. Nano Energy 1:479–487

    Article  CAS  Google Scholar 

  18. He S, Hu C, Hou H, Chen W (2014) Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J Power Sources 246:754–761

    Article  CAS  Google Scholar 

  19. Cao F, Liu Y, Chen B, Fei L, Wang Y, Yuan J (2012) Enhancement of electrochemical capacitive properties based on complementation of morphologies. Electrochim Acta 81:1–7

    Article  CAS  Google Scholar 

  20. Wang Y-T, Lu A-H, Zhang H-L, Li W-C (2011) Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. J Phys Chem C 115:5413–5421

    Article  CAS  Google Scholar 

  21. Ni J, Lu W, Zhang L, Yue B, Shang X, Lv Y (2008) Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J Phys Chem C 113:54–60

    Article  Google Scholar 

  22. Zhai D, Li B, Du H, Gao G, Gan L, He Y, Yang Q, Kang F (2012) The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors. Carbon 50:5034–5043

    Article  CAS  Google Scholar 

  23. Wang Y, Yu SF, Sun CY, Zhu TJ, Yang HY (2012) MnO2/onion-like carbon nanocomposites for pseudocapacitors. J Mater Chem 22:17584–17588

    Article  CAS  Google Scholar 

  24. Zhao X, Zhang L, Murali S, Stoller MD, Zhang Q, Zhu Y, Ruoff RS (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6:5404–5412

    Article  CAS  Google Scholar 

  25. Hassab S, Padilla J (2014) Use of ionic liquids in electrochromic devices. Ionic Liquids in Separation Technology 301

  26. Choi BG, Huh YS, Hong WH, Kim HJ, Park HS (2012) Electrochemical assembly of MnO2 on ionic liquid–graphene films into a hierarchical structure for high rate capability and long cycle stability of pseudocapacitors. Nanoscale 4:5394–5400

    Article  CAS  Google Scholar 

  27. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104:13574–13577

    Article  CAS  Google Scholar 

  28. Luo Y, Jiang J, Zhou W, Yang H, Luo J, Qi X, Zhang H, Yu DYW, Li CM, Yu T (2012) Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. J Mater Chem 22:8634

    Article  CAS  Google Scholar 

  29. Gao H, Xiao F, Ching CB, Duan H (2012) Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl Mater Interfaces 4:7020–7026

    Article  CAS  Google Scholar 

  30. Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2012) Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett 12:321–325

    Article  CAS  Google Scholar 

  31. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  CAS  Google Scholar 

  32. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutierrez HR, Heinz TF, Hong SS, Huang J, Ismach AF (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926

    Article  CAS  Google Scholar 

  33. Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3498

    Article  CAS  Google Scholar 

  34. Gao H, Xiao F, Ching CB, Duan H (2012) High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl Mater Interfaces 4:2801–2810

    Article  CAS  Google Scholar 

  35. Ra EJ, Raymundo-Piñero E, Lee YH, Béguin F (2009) High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47:2984–2992

    Article  CAS  Google Scholar 

  36. Kim C (2005) Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. J Power Sources 142:382–388

    Article  CAS  Google Scholar 

  37. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A (2007) High-performance carbon nanotube fiber. Science 318:1892–1895

    Article  CAS  Google Scholar 

  38. Lu X, Zhai T, Zhang X, Shen Y, Yuan L, Hu B, Gong L, Chen J, Gao Y, Zhou J (2012) WO3-x@ Au@ MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24:938–944

    Article  CAS  Google Scholar 

  39. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors. J Phys Chem C 115:23584–23590

    Article  CAS  Google Scholar 

  40. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  CAS  Google Scholar 

  41. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  42. Wu Y, Liu S, Zhao K, Yuan H, Lv K, Ye G (2015) Facile synthesis of 3D graphene hydrogel/carbon nanofibers composites for supercapacitor electrode. ECS Solid State Letters 4:M23–M25

    Article  CAS  Google Scholar 

  43. Li X, Li T, Zhang X, Zhong Q, Li H, Huang J (2014) Chemical splitting of multiwalled carbon nanotubes to enhance electrochemical capacitance for supercapacitors. Functional Materials Letters 7:1450057

    Article  CAS  Google Scholar 

  44. Jiang H, Li C, Sun T, Ma J (2012) A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 4:807–812

    Article  CAS  Google Scholar 

  45. Xia H, Lai M, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20:6896–6902

    Article  CAS  Google Scholar 

  46. Wang J-G, Yang Y, Huang Z-H, Kang F (2013) Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. J Power Sources 224:86–92

    Article  CAS  Google Scholar 

  47. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330

    Article  CAS  Google Scholar 

  48. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:1–6

    Article  Google Scholar 

  49. Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474

    Article  CAS  Google Scholar 

  50. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  51. Some S, Kim Y, Yoon Y, Yoo H, Lee S, Park Y, Lee H (2013) High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci Rep 3

  52. Lee S-W, Bak S-M, Lee C-W, Jaye C, Fischer DA, Kim B-K, Yang X-Q, Nam K-W, Kim K-B (2014) Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J Phys Chem C 118:2834–2843

    Article  CAS  Google Scholar 

  53. Brousse T, Taberna P-L, Crosnier O, Dugas R, Guillemet P, Scudeller Y, Zhou Y, Favier F, Bélanger D, Simon P (2007) Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J Power Sources 173:633–641

    Article  CAS  Google Scholar 

  54. Brousse T, Toupin M, Belanger D (2004) A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. J Electrochem Soc 151:A614–A622

    Article  CAS  Google Scholar 

  55. Sawangphruk M, Srimuk P, Chiochan P, Krittayavathananon A, Luanwuthi S, Limtrakul J (2013) High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60:109–116

    Article  CAS  Google Scholar 

  56. Kang YJ, Kim B, Chung H, Kim W (2010) Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers. Synth Met 160:2510–2514

    Article  CAS  Google Scholar 

  57. Li Z, Mi Y, Liu X, Liu S, Yang S, Wang J (2011) Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J Mater Chem 21:14706–14711

    Article  CAS  Google Scholar 

  58. Sumboja A, Foo CY, Wang X, Lee PS (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25:2809–2815

    Article  CAS  Google Scholar 

  59. Jin Y, Chen H, Chen M, Liu N, Li Q (2013) Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 5:3408–3416

    Article  CAS  Google Scholar 

  60. Chou S-L, Wang J-Z, Chew S-Y, Liu H-K, Dou S-X (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727

    Article  CAS  Google Scholar 

  61. Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211

    Article  CAS  Google Scholar 

  62. Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11:4438–4442

    Article  CAS  Google Scholar 

  63. Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599–606

    Article  CAS  Google Scholar 

  64. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  65. Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  CAS  Google Scholar 

  66. Khomenko V, Raymundo-Pinero E, Béguin F (2006) Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. J Power Sources 153:183–190

    Article  CAS  Google Scholar 

  67. Khomenko V, Raymundo-Pinero E, Frackowiak E, Beguin F (2006) High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl Phys A 82:567–573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funds from the Chinese National Natural Science Foundation (Nos.51372278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Liu.

Additional information

Prime novelty statement

1. A simple route to synthesize flexible graphene-carbon nanofiber/MnO2 nanocomposite paper (GMP) .

2. The GMP has free-standing structure to be directly used as electrode without any binders and conductive additives.

3. The GMP electrode exhibits excellent capacitive performance and good cycling life at high current density.

4. GMP-based asymmetric supercapacitor shows a high energy density of 23.0 Wh kg−1 at 450.8 W kg−1.

5. The GMP electrode holds a promising application in flexible supercapacitors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, S., Zhao, K. et al. Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors. Ionics 22, 1185–1195 (2016). https://doi.org/10.1007/s11581-015-1625-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1625-6

Keywords

Navigation