Skip to main content
Log in

Surface Functionalization of Doxorubicin loaded MCM-41 Mesoporous Silica Nanoparticles by 3-Aminopropyltriethoxysilane for Selective Anticancer 9 Effect on A549 and A549/DOX Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, MCM-41 mesoporous silica nanoparticles were successfully synthesized by the condensation of a tetraorthosilicate precursor on a template self-assembled by cetyltrimethylammonium bromide in alkaline. The small-angle x-ray diffraction patterns of MCM-41 indicate that silica nanoparticles possess hexagonal structures with a high degree of structural ordering. Transmission electron microscopy images show that the size of the MCM-41 particles is around 100-120 nm, and the pore sizes range from 2 nm to 4 nm. In addition, the specific surface area of MCM-41 obtained by Brunauer–Emmett–Teller analysis is as high as 987 m2.g−1 and the pore size extracted from nitrogen physical adsorption isotherms is in accordance with the TEM result. Thermogravimetric analysis, Fourier-transform infrared spectroscopy, Zeta potential measurements and photoluminescence measurements show that 3-aminopropyltriethoxysilane (APTES) and doxorubicin were grafted and loaded successfully onto MCM-41 nanoparticles. An assay on fibroblasts, A549 and doxorubicin-resistant A549/DOX cells indicates that the prepared MCM41 grafting APTES nanoparticles are safe to normal cells and toxic to cancer cells in vitro.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. WHO, Who Report on Cancer (Geneva: WHO, 2020).

    Google Scholar 

  2. H. Barabadi, O. Hosseini, K. Damavandi Kamali, F. Jazayeri Shoushtari, M. Rashedi, H. Haghi-Aminjan, and M. Saravanan, J. Clust. Sci. 31, 1 (2020).

    Article  CAS  Google Scholar 

  3. H. Barabadi, H. Vahidi, K. Damavandi Kamali, O. Hosseini, M.A. Mahjoub, M. Rashedi, F. Jazayeri Shoushtari, and M. Saravanan, J. Clust. Sci. 31, 323 (2020).

    Article  CAS  Google Scholar 

  4. N. Iturrioz-Rodríguez, M.A. Correa-Duarte, and M.L. Fanarraga, Int. J. Nanomedicine 14, 3389 (2019).

    Article  Google Scholar 

  5. Y.J. Cheng, S.Y. Qin, Y.H. Ma, X.S. Chen, A.Q. Zhang, X.Z. Zhang, and A.C.S. Biomater, Sci. Eng. 5, 1878 (2019).

    CAS  Google Scholar 

  6. Y. Zhang, J. Xu, and R. Soc, Open Sci. 5, 170986 (2018).

    Google Scholar 

  7. R. Narayan, U.Y. Nayak, A.M. Raichur, and S. Garg, Pharmaceutics 10, 1 (2018).

    Article  Google Scholar 

  8. H. Barabadi, Z. Alizadeh, M.T. Rahimi, A. Barac, A.E. Maraolo, L.J. Robertson, A. Masjedi, F. Shahrivar, and E. Ahmadpour, Biol. Med. 18, 221 (2019).

    CAS  Google Scholar 

  9. H. Barabadi, K. Damavandi Kamali, F. Jazayeri Shoushtari, B. Tajani, M.A. Mahjoub, A. Alizadeh, and M. Saravanan, J. Clust. Sci. 30, 1375 (2019).

    Article  CAS  Google Scholar 

  10. H. Barabadi, B. Tajani, M. Moradi, K. Damavandi Kamali, R. Meena, S. Honary, M.A. Mahjoub, and M. Saravanan, J. Clust. Sci. 30, 843 (2019).

    Article  CAS  Google Scholar 

  11. N.P.E. Barry, and P.J. Sadler, ACS Nano 7, 5654 (2013).

    Article  CAS  Google Scholar 

  12. H. Barabadi, H. Vahidi, K. Damavandi Kamali, M. Rashedi, O. Hosseini, A.R. GolnaraghicGhomi, and M. Saravanan, J. Clust. Sci. 31, 311 (2020).

    Article  CAS  Google Scholar 

  13. H. Barabadi, H. Vahidi, K. Damavandi Kamali, M. Rashedi, and M. Saravanan, J. Clust. Sci. 31, 659 (2020).

    Article  CAS  Google Scholar 

  14. C. Bharti, N. Gulati, U. Nagaich, and A. Pal, Int. J. Pharm. Investig. 5, 124 (2015).

    Article  CAS  Google Scholar 

  15. P. Krasucka and J. Goworek, Ann. Univ. Mariae Curie-Sklodowska, Sect. AA – Chem. 70, 45 (2016).

  16. Z. Li, Y. Zhang, and N. Feng, Expert Opin. Drug Deliv. 16, 219 (2019).

    Article  CAS  Google Scholar 

  17. M. Colilla, B. González, and M. Vallet-Regí, Biomater. Sci. 1, 114 (2013).

    Article  CAS  Google Scholar 

  18. Y. Song, Y.L. Qien, X. Zhe, and Z. Liu, Int J Nanomed. 12, 87 (2017).

    Article  CAS  Google Scholar 

  19. M. Karimi, H. Mirshekari, M. Aliakbari, P.S. Zangabad, and M.R. Hamblin, Nanotechnol. Rev. 5, 195 (2015).

    Google Scholar 

  20. Sun and Xiaoxing, Grad. Theses Diss. (2012).

  21. F. Marcucci, and A. Corti, Adv. Drug Deliv. Rev. 64, 53 (2012).

    Article  CAS  Google Scholar 

  22. C. Xu, C. Lei, and C. Yu, Front. Chem. 7, 1 (2019).

    Article  Google Scholar 

  23. E.D.M. Isa, H. Ahmad, and M.B.A. Rahman, J. Nanomater. 2019, 4982054 (2019).

    Google Scholar 

  24. N.S. Hosseini Motlagh, P. Parvin, M. Refahizadeh, and A. Bavali, Appl. Opt. 56, 7498 (2017).

    Article  Google Scholar 

  25. Y. Wang, Y. Sun, J. Wang, Y. Yang, Y. Li, Y. Yuan, C. Liu, and A.C.S. Appl, Mater. Interfaces 8, 17166 (2016).

    Article  CAS  Google Scholar 

  26. A. Tukappa, A. Ultimo, C. De La Torre, T. Pardo, F. Sancenón, and R. Martínez-Máñez, Langmuir 32, 8507 (2016).

    Article  CAS  Google Scholar 

  27. L.V.M. Hung, Y.W. Song, and S.K. Cho, Mar. Drugs 16, 1 (2018).

    Article  Google Scholar 

  28. J.Y. Moon, L.V.M. Hung, T. Unno, and S.K. Cho, Nutrients 10, 1829 (2018).

    Article  Google Scholar 

  29. H. Chen, S. Fu, L. Fu, H. Yang, and D. Chen, Minerals 9, 1 (2019).

    Google Scholar 

  30. D.P. Wijaya, W. Trisunaryanti, K.D. Triyono, and M.F. Marsuki, J. Chem. 34, 1847 (2018).

    CAS  Google Scholar 

  31. M. Jaroniec, M. Kruk, H.J. Shin, R. Ryoo, Y. Sakamoto, and O. Terasaki, Microporous Mesoporous Mater. 48, 127 (2001).

    Article  CAS  Google Scholar 

  32. F. Havasi, A. Ghorbani-Choghamarani, and F. Nikpour, New J. Chem. 39, 6504 (2015).

    Article  CAS  Google Scholar 

  33. Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, Biomaterials 33, 8704 (2012).

    Article  CAS  Google Scholar 

  34. S. Shah, A. Chandra, A. Kaur, N. Sabnis, A. Lacko, Z. Gryczynski, R. Fudala, and I. Gryczynski, J. Photochem. Photobiol. B Biol. 170, 65 (2017).

    Article  CAS  Google Scholar 

  35. T. Kong, L. Hao, Y. Wei, X. Cai, and B. Zhu, Cell Prolif. 51, 1 (2018).

    Article  CAS  Google Scholar 

  36. N.V. Roik, L.A. Belyakova, and M.O. Dziazko, Adsorpt. Sci. Technol. 35, 86 (2017).

    Article  CAS  Google Scholar 

  37. H. Vahidi, H. Barabadi, and M. Saravanan, J. Clust. Sci. 31, 301 (2020).

    Article  CAS  Google Scholar 

  38. Y. Zhao, X. Sun, G. Zhang, B.G. Trewyn, I.I. Slowing, and V.S.Y. Lin, ACS Nano 5, 1366 (2011).

    Article  CAS  Google Scholar 

  39. L. Chen, J. Liu, Y. Zhang, G. Zhang, Y. Kang, A. Chen, X. Feng, and L. Shao, Nanomedicine 13, 1939 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National University, Ho Chi Minh City (VNU-HCM) under Grant Number C2018-18-26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Thanh Van Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dau, T.A.N., Le, V.M.H., Pham, T.K.H. et al. Surface Functionalization of Doxorubicin loaded MCM-41 Mesoporous Silica Nanoparticles by 3-Aminopropyltriethoxysilane for Selective Anticancer 9 Effect on A549 and A549/DOX Cells. J. Electron. Mater. 50, 2932–2939 (2021). https://doi.org/10.1007/s11664-021-08813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08813-y

Keywords

Navigation