Skip to main content
Log in

Influence of Oxygen Vacancies on the Electronic and Optical Properties of Zirconium Dioxide from First-Principles Calculations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Although ZrO2 is a promising advanced functional material, the influence of oxygen vacancies (O-va) on the structural stability and electronic properties of monoclinic ZrO2 is unclear. In particular, the role of O-va on the optical properties of ZrO2 is not well understood. Here, we apply the first-principles approach to investigate the role of O-va on the structure, electronic and optical properties of ZrO2. Two ZrO2 phase: monoclinic and cubic structures are considered. The results show that the O-va is thermodynamically stable in both monoclinic and cubic structures. In particular, O-va-mono is more thermodynamically stable than O-va-cubic. The O-va improves the electronic properties of ZrO2 because of the role of the Zr-4d state and the O-2p state near the Fermi level. Importantly, the O-va widens the adsorption range of ZrO2. Therefore, we believe that oxygen vacancoes are beneficial for improving the electronic and optical properties of ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Alanne, Int. J. Hydrog. Energy 43, 10205 (2018).

    Article  Google Scholar 

  2. Y. Pan, J. Alloy. Compd. 779, 813 (2019).

    Article  Google Scholar 

  3. A. Khan, Z. Ali, I. Khan, and I. Ahmad, J. Electron. Mater. 47, 1871 (2018).

    Article  Google Scholar 

  4. Y. Pan, Y.Q. Li, Q.H. Zheng, and Y. Xu, J. Alloy. Compd. 786, 621 (2019).

    Article  Google Scholar 

  5. M. Tan, S. Wang, F. Rao, S. Yang, and F. Wang, J. Electron. Mater. 47, 7204 (2018).

    Article  Google Scholar 

  6. Y. Pan, Int. J. Hydrog. Energy 43, 3087 (2018).

    Article  Google Scholar 

  7. H. Wang, H. Zhang, J. Liu, D. Xue, H. Liang, and X. Xia, J. Electron. Mater. 48, 2430 (2019).

    Article  Google Scholar 

  8. Y. Pan and M. Wen, Int. J. Hydrog. Energy 43, 22055 (2018).

    Article  Google Scholar 

  9. W. Xu, J. Wang, A. Laref, J. Yang, X. Wu, and R. Wang, J. Electron. Mater. 47, 5498 (2018).

    Article  Google Scholar 

  10. Y. Pan and W.M. Guan, Inorg. Chem. 57, 6617 (2018).

    Article  Google Scholar 

  11. Y. Pan and W. Guan, J. Power Sour. 325, 246 (2016).

    Article  Google Scholar 

  12. I.M. Hung, Y.T. Chiou, Y.H. Wang, and T.N. Lin, J. Electron. Mater. 47, 5833 (2018).

    Article  Google Scholar 

  13. P.B. Azar, H. Tavanai, and A.R. Allafchian, J. Electron. Mater. 47, 3779 (2018).

    Article  Google Scholar 

  14. P. Bansal, N. Kaur, C. Prakash, and G.R. Chaudhary, Vacuum 157, 9 (2018).

    Article  Google Scholar 

  15. C. Cui, X. Zhu, S. Liu, Q. Li, M. Zhang, G. Zhu, and S. Wei, J. Alloy. Compd. 768, 81 (2018).

    Article  Google Scholar 

  16. K. Wei, R. He, X. Cheng, R. Zhang, Y. Pei, and D. Fang, Mater Des. 64, 91 (2014).

    Article  Google Scholar 

  17. C. Hong, X. Zhang, J. Han, J. Du, and W. Zhang, Mater. Chem. Phys. 119, 359 (2010).

    Article  Google Scholar 

  18. F. Li, X. Zhang, C. Sui, J. Wu, H. Wei, and Y. Zhang, Ceram. Int. 44, 18960 (2018).

    Article  Google Scholar 

  19. H. Guo, J. Guo, A. Baker, and C.A. Randall, J. Am. Ceram. Soc. 100, 491 (2017).

    Article  Google Scholar 

  20. B. Neppolian, Q. Wang, H. Yamashita, and H. Choi, Appl Catal A-gen. 333, 264 (2007).

    Article  Google Scholar 

  21. M.A. Rahman, S. Rout, J.P. Thomas, D. Mcgillivray, and K.T. Leung, J. Am. Chem. Soc. 138, 11896 (2016).

    Article  Google Scholar 

  22. Y. Mo, T. Liu, X. Wang, J. Li, and M. Yi, Ceram. Int. 45, 3680 (2019).

    Article  Google Scholar 

  23. B. Sathyaseelan, E. Manikandan, I. Baskaran, K. Senthilnathan, K. Sivakumar, M.K. Moodley, R. Ladchumananandasivam, and M. Maaza, J. Alloy. Compd. 694, 556 (2017).

    Article  Google Scholar 

  24. X. Bai, A. Pucci, V.T. Freitas, R.A.S. Ferreira, and N. Pinna, Adv. Funct. Mater. 22, 4275 (2012).

    Article  Google Scholar 

  25. J. Lian, J. Zhang, F. Namavar, Y. Zhang, F. Lu, H. Haider, K. Garvin, W.J. Weber, and R.C. Ewing, Nanotechnology 20, 245303 (2009).

    Article  Google Scholar 

  26. V. Chauhan, T. Gupta, N. Koratkar, and R. Kumar, Mat. Sci. Semicon. Proc 88, 262 (2018).

    Article  Google Scholar 

  27. Y. Pan and M. Wen, Thin Solid Films 664, 46 (2018).

    Article  Google Scholar 

  28. W. Wang, Y. Ren, and Y. Li, J. Electron. Mater. 48, 1582 (2019).

    Article  Google Scholar 

  29. Y. Pan, W.M. Guan, and Y.Q. Li, Phys. Chem. Chem. Phys. 20, 15863 (2018).

    Article  Google Scholar 

  30. A.K. Kushwaha, A. Laref, and S. Lared, J. Electron. Mater. 48, 3479 (2019).

    Article  Google Scholar 

  31. Y. Pan and W. Guan, Int. J. Hydrog. Energy 41, 11033 (2016).

    Article  Google Scholar 

  32. T.V. Perevalov and D.R. Islamov, Microelectron. Eng. 178, 275 (2017).

    Article  Google Scholar 

  33. B. Malki, O.L. Bacq, and A. Pasturel, J. Nucl. Mater. 429, 173 (2012).

    Article  Google Scholar 

  34. M. Raza, D. Cornil, J. Cornil, S. Lucas, R. Snyders, and S. Konstantinidis, Scripta Mater. 124, 26 (2016).

    Article  Google Scholar 

  35. B. Bondars, G. Heidemane, J. Grabis, K. Laschke, H. Boysen, J. Schneider, and F. Frey, J. Mater. Sci. 30, 1621 (1995).

    Article  Google Scholar 

  36. R. Srinivasan, R.J.D. Angelis, G. Ice, and B.H. Davis, J. Mater. Res. 6, 1287 (1991).

    Article  Google Scholar 

  37. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. 220, 567 (2005).

    Google Scholar 

  38. Y. Pan and B. Zhou, Ceram. Int. 43, 8763 (2017).

    Article  Google Scholar 

  39. J.P. Perdew and Y. Wang, Phys Rev B. 45, 13244 (1992).

    Article  Google Scholar 

  40. Y. Pan and W.M. Guan, Phys. Chem. Chem. Phys. 19, 19427 (2017).

    Article  Google Scholar 

  41. D. Vanderbilt, Phys Rev B. 41, 7892 (1990).

    Article  Google Scholar 

  42. Y. Pan, S. Wang, and C. Zhang, Vacuum 151, 205 (2018).

    Article  Google Scholar 

  43. M.C. Peters, J.W. Doak, J.E. Saal, G.B. Olason, and P.W. Voorhees, J. Electron. Mater. 48, 1031 (2019).

    Article  Google Scholar 

  44. Y. Pan, P. Mao, H. Jiang, Y. Wan, and W. Guan, Ceram. Int. 43, 5274 (2017).

    Article  Google Scholar 

  45. X. Li, S. Li, S. Feng, and H. Zhong, J. Electron. Mater. 47, 1022 (2018).

    Article  Google Scholar 

  46. Y. Pan, P. Wang, and C. Zhang, Ceram. Int. 44, 12357 (2018).

    Article  Google Scholar 

  47. S. Wang, Y. Pan, Y. Lin, and C. Tong, Comp. Mater Sci. 146, 18 (2018).

    Article  Google Scholar 

  48. Y. Pan and S. Wang, Ceram. Int. 44, 19583 (2018).

    Article  Google Scholar 

  49. Y. Tian and P. Wu, J. Electron. Mater. 47, 2600 (2018).

    Article  Google Scholar 

  50. Y. Pan and C. Jin, Vacuum 143, 165 (2017).

    Article  Google Scholar 

  51. M.K. Hussain, O.T. Hassan, and A.M. Algubili, J. Electron. Mater. 47, 6221 (2018).

    Article  Google Scholar 

  52. Y. Pan, Y. Li, and Q. Zheng, J. Alloy. Compd. 789, 860 (2019).

    Article  Google Scholar 

  53. Y. Pan, Mater. Res. Bull. 93, 56 (2017).

    Article  Google Scholar 

  54. S.S. Mehmood, Z. Ali, I. Khan, F. Khan, and I. Ahmad, J. Electron. Mater. 48, 1730 (2019).

    Article  Google Scholar 

  55. Y. Pan, S. Wang, X. Zhang, and J. Jia, Ceram. Int. 44, 1744 (2018).

    Article  Google Scholar 

  56. A. Predith, G. Ceder, C. Wolverton, K. Persson, and T. Mueller, Phys. Rev. B 77, 144104 (2008).

    Article  Google Scholar 

  57. Z. Liang, W. Wang, M. Zhang, F. Wu, J.F. Chen, C. Xue, and H. Zhao, Phys. B 511, 10 (2017).

    Article  Google Scholar 

  58. P. Maji, R.B. Choudhary, and M. Majhi, Optik 127, 4848 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 51274170). We also thank Lady Yun Zheng and Runxi Pan for help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y. Influence of Oxygen Vacancies on the Electronic and Optical Properties of Zirconium Dioxide from First-Principles Calculations. J. Electron. Mater. 48, 5154–5160 (2019). https://doi.org/10.1007/s11664-019-07325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07325-0

Keywords

Navigation