Skip to main content

Advertisement

Log in

Crystal Stability, Chemical Bonding, Optical and Thermoelectric Properties of LaAgZnX2 (X = P, As) Through First Principles Study

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Zintl materials have received enormous attention in recent time due to their unique structure and thermoelectric efficiency. In this work, quaternary Zintl compounds LaAgZnX2 (X = P, As) have been comprehensively investigated using the FP-LAPW + lo method through first principles approximation. The dynamic stability of the samples is performed through phonon analysis. Birch–Murnaghan equation of states is used to determine ground state parameters. The lattice constant increases while formation energy and bulk modulus B(GPa) decrease by anion replacement from P to As. Band structure calculation shows that LaAgZnP2 is an indirect bandgap semiconductor while LaAgZnAs2 is a direct bandgap semiconductor. The density of states (DOS) demonstrates that the valence band (V.B) is mainly comprised of Zn-d and X-p states while the La-f state is in the conduction band (C.B) along with the minor contribution of the La-d state. Substantial absorption is observed in the low-frequency ultraviolet and visible spectrums for these compounds. Red shifting of the hallmark optic peak occurs due to the anion replacement from P to As. To investigate the electric and thermal conductivities, Seebeck coefficients, and thermopower factor, the Boltzmann transport theory is used to quantify them for these materials. High absorption peaks and figures of merits of these compounds highlight their potential usage in optoelectronics and thermoelectric systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data can be available on reasonable request.

References

  1. Z. Wu, S. Zhang, Z. Liu, E. Mu, Z. Hu, Thermoelectric converter: strategies from materials to device application. Nano Energy 91, 106692 (2022). https://doi.org/10.1016/j.nanoen.2021.106692

    Article  CAS  Google Scholar 

  2. M.A. Zoui, S. Bentouba, J.G. Stocholm, M. Bourouis, A review on thermoelectric generators: progress and applications. Energies 13, 3606 (2020)

    Article  CAS  Google Scholar 

  3. C. Jing, Y.T. Xian, J. Dong, H. Liu, Y. Zheng, Q. Zhu, J. Xu, G. Zhang, J. Wu, Thermoelectric device performance beyond average ZT: holistic consideration of materials and design. Mater. Today Phys. 34, 101071 (2023). https://doi.org/10.1016/j.mtphys.2023.101071

    Article  CAS  Google Scholar 

  4. L. Yang, Z.G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: progress and their applications. Adv. Energy Mater. 8, 1–28 (2018). https://doi.org/10.1002/aenm.201701797

    Article  CAS  Google Scholar 

  5. J. Prakash, Ionic thermoelectric materials for energy harvesting. J. Crit. Rev. 7, 12312–12326 (2020)

    Google Scholar 

  6. M. Guo, F. Guo, J. Zhu, L. Yin, H. Qin, Q. Zhang, W. Cai, J. Sui, Enhanced thermoelectric properties of P-type CaMg2Bi2 via a synergistic effect originated from Zn and alkali-metal co-doping. ACS Appl. Mater. Interfaces 12, 6015–6021 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. X. Ye, Z. Feng, Y. Zhang, G. Zhao et al., Low thermal conductivity and high thermoelectric performance via Cd underbonding in Half-Heusler PCdNa. Phys. Rev. B 105, 104309 (2022). https://doi.org/10.1103/PhysRevB.105.104309

    Article  CAS  Google Scholar 

  8. V. Ponnambalam, D.T. Morelli, Thermoelectric properties of light-element-containing Zintl compounds CaZn2-xCuxP2 and CaMnZn1-xCux P2 (x = 00–02). J. Electron. Mater. 43, 1875–1880 (2014)

    Article  CAS  Google Scholar 

  9. M.W. Iqbal, M. Manzoor, H. Ateeq, S. Azam, G. Murtaza, S. Aftab, M.A. Kamran, A. Majid, Structural, electronic, optoelectronic and transport properties of LuZnCuAs2 compound: first principle calculations under DFT. Physica B 596, 412351 (2020)

    Article  CAS  Google Scholar 

  10. A. Bekhti-Siad, K. Bettine, D.P. Rai, Y. Al-Douri, X. Wang, R. Khenata, A. Bouhemadou, C.H. Voon, Electronic, optical and thermoelectric investigations of Zintl phase AE3AlAs3 (AE = Sr, Ba): first-principles calculations. Chin. J. Phys. 56, 870–879 (2018)

    Article  CAS  Google Scholar 

  11. H. Mamur, M.A. Üstüner, H. Korucu, M.R.A. Bhuiyan, A review of the performance evaluation of thermoelectric nanostructure materials Bi2-XSbxTe3 (0.20≤X≤1.80). Clean. Chem. Eng. 6, 100101 (2023). https://doi.org/10.1016/j.clce.2023.100101

    Article  Google Scholar 

  12. H. Zhang, Y. Wang, Z.A. Munir, Y. Zhang, W. Fan, S. Chen, Improvement of the conversion efficiency of Mg3Sb2 thermoelectric devices through optimizing the resistivity of the MgSbNi barrier layer. J. Mater. Sci. Technol. 168, 208–214 (2023). https://doi.org/10.1016/j.jmst.2023.05.034

    Article  Google Scholar 

  13. H. Zhang, J.T. Zhao, Y. Grin, X.J. Wang, M.B. Tang, Z.Y. Man, H.H. Chen, X.X. Yang, A new type of thermoelectric material, Eu Zn2 Sb2. J. Chem. Phys. 129, 2–7 (2008)

    Article  Google Scholar 

  14. K. Guo, Q. Cao, J. Zhao, Zintl phase compounds AM2Sb2 (A=Ca, Sr, Ba, Eu, Yb; M=Zn, Cd) and their substitution variants: a class of potential thermoelectric materials. J. Rare Earths 31, 1029–1038 (2013)

    Article  CAS  Google Scholar 

  15. Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono et al., Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 1–2 (2016)

    Article  Google Scholar 

  16. L. Salik, A. Bouhemadou, K. Boudiaf, F.S. Saoud, S. Bin-Omran, R. Khenata, Y. Al-Douri, A.H. Reshak, Structural, elastic, electronic, magnetic, optical, and thermoelectric properties of the diamond-like quaternary semiconductor CuMn2InSe4. J. Supercond. Nov. Magn. 33, 1091–1102 (2020)

    Article  CAS  Google Scholar 

  17. G.D. Mahan, J.O. Sofo, The best thermoelectric. Proc. Natl. Acad. Sci. U.S.A. 93, 7436–7439 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616–8639 (2009)

    Article  CAS  Google Scholar 

  19. E.S. Toberer, A.F. May, G.J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2010)

    Article  CAS  Google Scholar 

  20. A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, G.D. Stucky, Large thermoelectric figure of merit at high temperature in czochralski-grown clathrate Ba 8Ga 16Ge 30. J. Appl. Phys. 99, 2 (2006)

    Article  Google Scholar 

  21. C. Zheng, R. Hoffmann, R. Nesper, H.G. von Schnering, Site preferences and bond length differences in CaAl2Si2-type Zintl compounds. J. Am. Chem. Soc. 108, 1876–1884 (1986)

    Article  CAS  Google Scholar 

  22. C.H. Chu, C.W. Leung, The convolution equation of Choquet and deny on [IN]-groups. Integr. Equ. Oper. Theory 40, 391–402 (2001)

    Article  Google Scholar 

  23. V.O. Lume, Linear methods in band theory*. Weatherwise 28, 276–283 (1975)

    Google Scholar 

  24. D.D. Koelling, G.O. Arbman, Use of energy derivative of the radial solution in an augmented plane wave method: application to copper. J. Phys. F 5, 2041–2054 (1975)

    Article  CAS  Google Scholar 

  25. K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso et al., Reproducibility in density functional theory calculations of solids. Science (80–) 351, 6280 (2016)

    Article  Google Scholar 

  26. Z. Zada, A. Laref, G. Murtaza, A. Zeb, A. Yar, First-principles calculations of electronic and magnetic properties of XMn2Y2 (X = Ca, Sr; Y = Sb, Bi) compounds. Int. J. Mod. Phys. B 33, 1–8 (2019)

    Article  Google Scholar 

  27. J.P. Perdew, Y. Wang, Erratum: accurate and simple analytic representation of the electron-gas correlation energy (Physical Review B (1992) 45 (13244) DOI: https://doi.org/10.1103/PhysRevB.45.13244). Phys. Rev. B 98, 195128 (2018)

  28. J.C. Slater, Wave functions in a periodic potential. Phys. Rev. 51, 846–850 (1937)

    Article  CAS  Google Scholar 

  29. J.C. Slater, Energy band calculations by the augmented plane wave method. Adv. Quantum Chem. 1, 35–58 (1964)

    Article  CAS  Google Scholar 

  30. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  CAS  Google Scholar 

  31. S.S. Stoyko, K.K. Ramachandran, P.E.R. Blanchard, K.A. Rosmus, J.A. Aitken, A. Mar, Three series of quaternary rare-earth transition-metal pnictides with CaAl2Si2-type structures: RECuZnAs2, REAgZnP2, and REAgZnAs2. J. Solid State Chem. 213, 275–286 (2014)

    Article  CAS  Google Scholar 

  32. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)

    Article  CAS  Google Scholar 

  33. Materials Project. mp-1222704: LaZnAgP2. Materials Project. https://www.materialsproject.org/cif/mp-1222704/. Accessed 30 Jan 2024

  34. Materials Project. mp-1222706: LaZnAgAs2. Materials Project. https://www.materialsproject.org/cif/mp-1222706/. Accessed 30 Jan 2024

  35. R.F.W. Bader, Atoms in molecules (Oxford University Press, Oxford, 1990)

    Book  Google Scholar 

  36. I. Tarik Ouahrani, H.B. Merad-Boudia, R. Khenata, Z. Bentalha, Phys. Scr. 84, 025704 (2011)

    Article  Google Scholar 

  37. R.A. Boto, J.P. Piquemal, J. Contreras-Garcia, Revealing strong interactions with the reduced density gradient: a benchmark for covalent, ionic and charge-shift bonds. Theor. Chem. Acc. 36, 139 (2017)

    Article  Google Scholar 

  38. S.H. Shah, S. Khan, G. Murtaza, M.A. Ali, A. Laref, E. Algrafy, A.A.H. Ahmadini, Anion replacement effect on BaCd2X2 (X = P, As, Sb, Bi) compounds: a first principles study. J. Solid State Chem. 292, 121589 (2020)

    Article  CAS  Google Scholar 

  39. X. Zhao, J.D.A. Ng, R.H. Friend, Z.K. Tan, Opportunities and challenges in perovskite light-emitting devices. ACS Photonics 5, 3866–3875 (2018)

    Article  CAS  Google Scholar 

  40. L. Ma, J. Dai, X.C. Zeng, Solar cells: two‐dimensional single‐layer organic–inorganic hybrid perovskite semiconductors (Adv. Energy Mater. 7/2017). Adv. Energy Mater. 7, 2017 (2017)

  41. P. Wadley, V. Novák, R.P. Campion, C. Rinaldi, X. Martí, H. Reichlová, J. Železný, J. Gazquez, M.A. Roldan, M. Varela et al., Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 4, 1–6 (2013)

    Article  Google Scholar 

  42. A.A. Khan, A. Ur Rehman, A. Laref, M. Yousaf, G. Murtaza, Structural, optoelectronic and thermoelectric properties of ternary CaBe2X2 (X = N, P, As, Sb, Bi) compounds. Zeitschrift fur Naturforsch. A 73, 965–973 (2018)

    Article  CAS  Google Scholar 

  43. H. Ehrenreich, M.H. Cohen, Self-consistent field approach to the many-electron problem. Phys. Rev. 115, 786–790 (1959)

    Article  Google Scholar 

  44. D.J. Chadi, R.M. White, Frequency- and wave-number-dependent dielectric function of semiconductors. Phys. Rev. B 11, 5077–5081 (1975)

    Article  CAS  Google Scholar 

  45. K.M. Wong, W. Khan, M. Shoaib, U. Shah, S.H. Khan, G. Murtaza, Ab initio investigation of the structural, electronic and optical properties of the Li2In2XY6 (X = Si, Ge; Y = S, Se) compounds. J. Electron. Mater. 47, 566–576 (2018)

    Article  CAS  Google Scholar 

  46. S.D. Krashen, Study of anion replacement effect on SrCd2X2 (X = P, As, Sb, Bi) compounds by FPLAPW+lo. Mater. Sci. Semicond. Process. 46, 55 (1982)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Researchers Supporting Project Number (RSP2024R267) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

The author one and two have equal contribution.

Corresponding author

Correspondence to G. Murtaza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jehangir, M.A., Ouahrani, T., Albaqami, M.D. et al. Crystal Stability, Chemical Bonding, Optical and Thermoelectric Properties of LaAgZnX2 (X = P, As) Through First Principles Study. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03053-z

Keywords

Navigation