Skip to main content

Advertisement

Log in

Zn-doping and oxygen vacancy effects on the reactivity and properties of monoclinic and tetragonal ZrO2: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Zirconia oxide (ZrO2) is a material that has aroused great interest in the scientific community for its general use in various technological applications, such as fuel cells, solar cells, electronic devices, catalysis, dental biomaterial and ceramics. When it is applied as a catalyst, the doping and vacancy effects of their crystalline phases are important properties to guide new developments. This work investigates tetragonal and monoclinic crystalline phases of the Zn-doped ZrO2 by periodic density functional calculations. Changes in the electronic and acid-basic properties were performed by Bader charge analysis, the density of states calculations (DOS) and the projected density of states (PDOS). The formation of oxygen vacancies was also evaluated. The calculated oxygen vacancy formation energies indicate that it is much easier to generate oxygen vacancy in the Zn-doped ZrO2 than in the pure material; in addition, oxygen vacancy formation is favored in the monoclinic phase. Bader charge analyses and projected density of states indicated that the doping of ZrO2 with Zn creates more basic and acid sites. The most stable material is the Zn-doped 3-fold coordinated Zr atom of the m-ZrO2, which can be used for future developments and applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Mahbubul I, Saidur R, Amalina M (2012) Investigation of viscosity of R123-TiO2 nanorefrigerant. Int J Mech Mater Eng 7(2):146–151

    Google Scholar 

  2. Yang X, Zhao L, Lv K, Dong B, Wang S (2019) Enhanced efficiency for dye-sensitized solar cells with ZrO2 as a barrier layer on TiO2 nanofibers. Appl Surf Sci 469:821–828

    Article  CAS  Google Scholar 

  3. Sathyaseelan B, Manikandan E, Baskaran I, Senthilnathan K, Sivakumar K, Moodley M, et al. (2017) Studies on structural and optical properties of ZrO2 nanopowder for opto-electronic applications. J Alloys Compd 694:556–559

    Article  CAS  Google Scholar 

  4. Kauppi E, Honkala K, Krause A, Kanervo J, Lefferts L (2016) ZrO2 acting as a redox catalyst. Top Catal 59(8):823–832

    Article  CAS  Google Scholar 

  5. Bona AD, Pecho OE, Alessandretti R (2015) Zirconia as a dental biomaterial. Materials 8(8):4978–4991

    Article  PubMed  PubMed Central  Google Scholar 

  6. Manicone PF, Iommetti PR, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35(11):819–826

    Article  CAS  PubMed  Google Scholar 

  7. Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92(9):1901–1920

    Article  CAS  Google Scholar 

  8. Ibrahim AA, Kasim SO, Fakeeha AH, Lanre MS, Abasaeed AE, Abu-Dahrieh JK, et al. (2022) Dry reforming of methane with Ni supported on mechanically mixed Yttria-Zirconia support. Catal Lett: 1–10

  9. Ye RP, Ding J, Gong W, Argyle MD, Zhong Q, Wang Y et al (2019) CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat Commun 10(1):1–15

    Article  Google Scholar 

  10. Maruya K, Komiya T, Hayakawa T, Lu L, Yashima M (2000) Active sites on ZrO2 for the formation of isobutene from CO and H2. J Mol Catal A: Chem 159(1):97–102

    Article  CAS  Google Scholar 

  11. Yamaguchi T (1990) Recent progress in solid superacid. Appl Catal 61(1):1–25

    Article  CAS  Google Scholar 

  12. Espino OE, Zonetti P, Celin R, Costa L, Alves O, Spadotto J, et al. (2022) The tendency of supports to generate oxygen vacancies and the catalytic performance of Ni/ZrO2 and Ni/Mg(Al)O in CO2 methanation. Catal Sci Technol 12(4):1324–1338

    Article  Google Scholar 

  13. Dong X, Li F, Zhao N, Xiao F, Wang J, Tan Y (2016) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl Catal B Environ 191:8–17

    Article  CAS  Google Scholar 

  14. Sushkevich VL, Ivanova II (2017) Mechanistic study of ethanol conversion into butadiene over silver promoted zirconia catalysts. Appl Catal B: Environ 215:36–49

    Article  CAS  Google Scholar 

  15. Sushkevich VL, Ivanova II, Ordomsky VV, Taarning E (2014) Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol. ChemSusChem 7(9):2527–2536

    Article  CAS  PubMed  Google Scholar 

  16. Vlasenko N, Kyriienko P, Valihura K, Yanushevska O, Soloviev S, Strizhak P (2019) Effect of modifying additives on the catalytic properties of zirconium dioxide in the conversion of ethanol into 1-butanol. Theor Exp Chem 55(1):43–49

    Article  CAS  Google Scholar 

  17. Vaizoğullar A. I. (2019) ZnO/ZrO2 composites: synthesis characterization and photocatalytic performance in the degradation of oxytetracycline antibiotic. Mater Technol 34(8):433–443

    Article  Google Scholar 

  18. Velumani M, Meher S, Balakrishnan L, Sivacoumar R, Alex Z (2016) ZrO2-ZnO composite thin films for humidity sensing. In: AIP conference proceedings, vol 1731. AIP Publishing LLC, p 080032

  19. Chagas LH, Zonetti PC, Matheus CR, Rabello CR, Alves OC, Appel LG (2019) The role of the oxygen vacancies in the synthesis of 1, 3-Butadiene from Ethanol. ChemCatChem 11(22):5625–5632

    Article  CAS  Google Scholar 

  20. Ahn CI, Kim C, Bae JW, Jeon J, Jung HS, Kim YB et al (2020) Ethanol conversion into 1, 3-butadiene over ZnZr mixed oxide catalysts supported on ordered mesoporous materials. Fuel Process Technol 200:106317

    Article  CAS  Google Scholar 

  21. Silva-Calpa LdR, Zonetti PC, Rodrigues CP, Alves OC, Appel LG, de Avillez RR (2016) The ZnxZr1−xO2−y solid solution on m-ZrO2: creating O vacancies and improving the m-ZrO2 redox properties. J Mol Catal A: Chem 425:166–173

    Article  CAS  Google Scholar 

  22. Ticali P, Salusso D, Ahmad R, Ahoba-Sam C, Ramirez A, Shterk G et al (2021) CO2 hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO2/zeolite catalysts. Catal Sci Technol 11(4):1249–1268

    Article  CAS  Google Scholar 

  23. Chagas LH, Matheus CR, Zonetti PC, Appel LG (2018) Butadiene from ethanol employing doped t-ZrO2. Mol Catal 458:272–279

    Article  CAS  Google Scholar 

  24. Bashir A, Siddiqui H, Naseem S, Bhatti AS (2021) Ecofriendly water-based solution processing: preliminary studies of Zn-ZrO2 thin films for microelectronics applications. Coatings 11(8):901

    Article  CAS  Google Scholar 

  25. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  PubMed  Google Scholar 

  26. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Article  Google Scholar 

  27. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Article  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  29. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Article  Google Scholar 

  30. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13 (12):5188

    Article  Google Scholar 

  31. Cococcioni M, De Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA+ U method. Phys Rev B 71(3):035105

    Article  Google Scholar 

  32. Lambert DS, O’Regan DD DFT+U+J with linear response parameters predicts non-magnetic oxide band gaps with hybrid-functional accuracy. Available from: arXiv:2111.08487

  33. Consiglio TZ Anthony Importance of the Hubbard correction on the thermal conductivity calculation of strongly correlated materials: a case study of ZnO. Scientific Reports; 6

  34. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford U.K.

    Google Scholar 

  35. Sternik M, Parlinski K (2005) Lattice vibrations in cubic, tetragonal, and monoclinic phases of ZrO2. J Chem Phys 122(6):064707

    Article  CAS  PubMed  Google Scholar 

  36. Song KS, Williams RT (1993) Self trapped excitons. Springer-Verlag, Berlim

    Book  Google Scholar 

  37. Linch CT (1974) CRC Handbook of Materials Sciences Taylor Francis Group

  38. Aldebert P, Traverse JP (1985) Structure and ionic mobility of Zirconia at high temperature. J Am Ceram Soc 68(1):34–40. https://doi.org/10.1111/j.1151-2916.1985.tb15247.x

    Article  CAS  Google Scholar 

  39. Li J, Meng S, Niu J, Lu H (2017) Electronic structures and optical properties of monoclinic ZrO2 studied by first-principles local density approximation+ U approach. J Adv Ceram 6(1):43–49

    Article  CAS  Google Scholar 

  40. Zandiehnadem F, Murray R, Ching W (1988) Electronic structures of three phases of zirconium oxide. Physica B+ C 150(1-2):19–24

    Article  CAS  Google Scholar 

  41. Houssa M, Afanas’ ev V, Stesmans A, Heyns M (2000) Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation. Appl Phys Lett 77(12):1885–1887

    Article  CAS  Google Scholar 

  42. Zhao X, Vanderbilt D (2002) Phonons and lattice dielectric properties of zirconia. Phys Rev B 65(7):075105

    Article  Google Scholar 

  43. Puthenkovilakam R, Chang JP (2004) Valence band structure and band alignment at the ZrO2/Si interface. Appl Phys Lett 84(8):1353–1355

    Article  CAS  Google Scholar 

  44. Sunke V, Bukke G, Suda U (2018) Characterisation of nanostructured ZrO2 thin films formed by DC reactive magnetron sputtering. J Nanomed Res 7(2):65–68

    Google Scholar 

  45. López U, Lemus A, Hidalgo M, López González R, Quintana Owen P, Oros-Ruiz S et al (2019) Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. J Nanomater: 2019

  46. Ariza R, Dael M, Sotillo B, Urbieta A, Solis J, Fernandez P (2021) Vapor-solid growth ZnO: ZrO2 micro and nanocomposites. J Alloys Compds 877:160219

    Article  CAS  Google Scholar 

  47. Ji P, Mao Z, Wang Z, Xue X, Zhang Y, Lv J et al (2019) Improved surface-enhanced Raman scattering properties of ZrO2 nanoparticles by Zn doping. Nanomaterials 9(7):983

    Article  CAS  PubMed Central  Google Scholar 

  48. Haq S, Afsar H, Ali MB, Almalki M, Albogami B, Hedfi A (2021) Green synthesis and characterization of a ZnO-ZrO2 heterojunction for environmental and biological applications. Curr Comput-Aided Drug Des 11(12):1502

    CAS  Google Scholar 

  49. Mishra K, Kim SH, Lee YR (2019) Band-gap narrowing of highly stable heterogeneous ZrO2–ZnO nanocomposites for the reductive amination of carbonyl compounds with formic acid and triethylamine. ChemSusChem 12(4):881–889

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from FAPERJ, CAPES and CNPq. R. C. Mancera and L. T. Costa thanks for the Computing Resources from OSCAR and CENAPAD Server. Luciano T. Costa also acknowledges the support from PRINT-CAPES-UFF and CAPES/STINT projects (Grant Numbers 17846692372, CAPES/PRINT 1038152P and 88881.465529/2019-01)

Funding

Rafael C. Mancera reports financial support was provided by CAPES, Luciano T Costa reports financial support was provided by National Council for Scientific and Technological Development.

Author information

Authors and Affiliations

Authors

Contributions

Rafael C. Mancera: investigation, methodology, validation, writing — original draft; Viviane S. Vaiss: writing — review, supervision; R. R de Avillez: conceptualization, writing — review; Lucia Appel: conceptualization, writing — review; Luciano T. Costa: funding acquisition, project administration, supervision, writing — review and editing, resources, conceptualization.

Corresponding authors

Correspondence to Viviane S. Vaiss or Luciano T. Costa.

Ethics declarations

Ethics approval

N/A

Consent for publication

N/A

Consent to participate

N/A

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: XXI-Brazilian Symposium of Theoretical Chemistry (SBQT2021)

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (zip 4.89 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancera, R.R.C., Vaiss, V.S., Espino, O.E.E. et al. Zn-doping and oxygen vacancy effects on the reactivity and properties of monoclinic and tetragonal ZrO2: a DFT study. J Mol Model 28, 358 (2022). https://doi.org/10.1007/s00894-022-05328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05328-z

Keywords

Navigation