Skip to main content
Log in

Dissolution Rate of Electronics Packaging Surface Finish Elements in Sn3.0Ag0.5Cu Solder

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A clear understanding of the characteristics of solder wetting to component terminations is critical for establishing thermal process profiles that ensure acceptable solder joint integrity. For example, component gold plating thickness as well as the soldering process temperature and time must be carefully controlled to prevent embrittlement by the gold/tin intermetallic compound. The electronics industry has successfully applied the results published in 1969 by W.G. Bader to relate process temperature and time to surface finish dissolution rates in defining acceptable soldering process profiles for tin/lead surface finishes. To date, there is no single comprehensive data set for these materials that is comparable to the Bader work. To address this need, solder dissolution experiments modeled on the Bader work were conducted using Sn3.0Ag0.5Cu (SAC305) solder with gold, silver, palladium, platinum, copper and nickel samples. In these experiments, samples were immersed in a solder pot, and the resulting material dissolution was determined for different solder temperatures and immersion times. This paper describes the test approach for measuring the solder dissolution of these materials and tabulates dissolution rates suitable for optimizing soldering process profiles for electronic assemblies. The dissolution rates of the surface finish materials were found to typically be about 50% higher for the lead-free SAC305 solder than tin–lead solder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Frequency factor

Ag:

Silver

A meas :

Measured cross-sectional area of wire sample

Au:

Gold

Cu:

Copper

δX :

90% CI for a parameter X determined with regression analysis

E :

Activation energy (kJ/mol)

ENEPIG:

Electroless nickel/electroless palladium/immersion gold

ICP:

Inductively coupled plasma

IMC:

Intermetallic compound

IPC-JSTD-xxx:

Joint standard published by the Association Connecting Electronics Industries

n :

Number of data points used in a regression analysis

Ni:

Nickel

OES:

Optical emission spectroscopy

Pb:

Lead

Pd:

Palladium

Pt:

Platinum

r :

Effective radius of wire sample

R :

Universal Gas Constant (8.314 J/kg K)

R 2 :

Correlation coefficient for regression analysis results

RoHS:

Restriction of hazardous substances directive

SAC305:

Solder alloySn3.0Ag0.5Cu

SEM:

Scanning electron microscopy

Sn:

Tin

SN100C:

Solder alloySn0.70.05Ni0.009Ge

SnPb:

Solder alloySn60Pb40

t :

Time

T :

Temperature

References

  1. W.G. Bader, Welding Research Supplement, December 1969, p. 551s.

  2. M. Bester, InterNEPCON Proceedings, 1968, p. 211.

  3. F.G. Foster, ASTM Special Technical Publications, No. 319, 1962.

  4. S.D. Ebneter, NASA Technical Memorandum X-53335, Oct. 1965.

  5. P. Vianco, Soldering Handbook, American Welding Society, ISBN 0-87171-618-6, p. 182.

  6. K. Puttliz and K. Stalter, Handbook of Lead-free Solder Technology for Microelectronics Assemblies, Marcel Decker Inc., ISBN 0-8247-4870-0, p. 475.

  7. R.J. Klein Wassink, Soldering in Electronics, Electrochemical Publications Limited, ISBN 0-901150-14-2, p. 107.

  8. C. Lea, A Scientific Guide to Surface Mount Technology, Electrochemical Publications Limited, ISBN 0-901150-22-3, p. 107.

  9. S. O. Duford, Z. Primavera, and M. Meilunas, IPC Annual Meeting, 2002, p. S08-4 1.

  10. D. Hillman, M. Wells, and K. Cho, CMAP Conference Proceedings, 2005.

  11. D. Hillman, J. Soole, and R. Wilcoxon, SMTA Int Conf on Soldering and Reliability (ICSR), May, 2008.

  12. Texas Instrument Technical Report # SZZA002, April, 1998.

  13. Texas Instrument Technical Report # SZZA004, April, 1998.

  14. D. Finley, U. Ray, I. Artaki, P. Vianco, S. Shaw, A. Reyes, and M. Haq, Proc. of the 1995 SMI Tech Prog, 1995, p. 941.

  15. R. Pratt, E. Stromweld, and C. Quesnel, Sandia Report SAND93-7104, September, 1993.

  16. M. Wolverton, IPC APEX EXPO Conf. Proc., 2014.

  17. P. Tegehall, IVF Project Report 06/07, March, 2006.

  18. Y. Chen, K. Huang, and H. Chen, Advanced Packaging Materials (APM), 2013 IEEE Int Symp, p. 102.

  19. Z. Mei and A. Eslambolchi, SMTAI Conf. Proc., Paper 3C14, 1998.

  20. B. Gumpert, W. Fox, and C.D. Dupriest, SMTAI Conf. Proc., Paper SUB4.2, 2017.

  21. M. Wolverton, SMTAI Conf. Proc., 2011, pp. 960.

  22. L. Garner, S. Sane, D. Suh, T. Byrne, A. Dani, T. Martin, M. Mello, M. Patel, and R. Williams, Intel Tech J, Vol. 9, Issue 4, 2005, ISSN 1535-864X, pp. 297.

  23. J. Kennedy, D. Hillman, and R. Wilcoxon, 2013 SMTA Int. Conf. on Soldering and Reliability Proc., Toronto Canada.

  24. http://www.clemex.com/en/Home. (Accessed March 14, 2018)

  25. J.S. Milton and J.C. Arnold, Probability and Statistics in the Engineering and Computer Sciences (McGraw-Hill, 1986), pp. 350.

  26. H. Berg and E.L. Hall, 11th IEEE Reliability Physics Symposium, Las Vegas, NV, USA, 1973, pp. 10. https://doi.org/10.1109/irps.1973.362561

  27. H. Heinzel and K.E. Saeger, Gold Bull 9, 7 (1976). https://doi.org/10.1007/BF03215398.

    Article  Google Scholar 

  28. R.A. Bulwith and C.A. MacKay, Welding Research Supplement, March, 1985, p. 86.

  29. I.E. Anderson, Lead-free Electronic Solders, Springer, ISBN 0-387-48431-0, 2007, p. 55.

  30. G.Y. Li and Y.C. Chan, Materials Science and Engineering: B, Volume 57, Issue 2, 1999, ISSN 0921-5107, pp. 116. https://doi.org/10.1016/S0921-5107(98)00313-4.

  31. P. Snugovsky, Z. Bagheri, and C. Hamilton, C. J. Electer. Mater. 38, 2628 (2009). https://doi.org/10.1007/s11664-009-0923-z.

    Article  Google Scholar 

  32. G. Izuta, T. Tanabe, and K. Suganuma, Soldering & Surface Mount Tech. (2007), https://doi.org/10.1108/09540910810836484.

  33. S.C. Yang, W.C. Chang, Y.W. Wang, and C.R. Kao, Journal of Elec Materials 38, 25 (2009).

    Article  Google Scholar 

  34. T.M. Korhonen, P. Su, and S.J. Hong, J. Electer. Mater. 29, 1194 (2000).

    Article  Google Scholar 

  35. P.T. Vianco, J.A. Rejent, G.L. Zender, and P.F. Hlava, Metall. Mat. Trans. A 41, 3042 (2010). https://doi.org/10.1007/s11661-010-0406-0.

    Article  Google Scholar 

  36. P. Vianco, J. Rejent, G. Zender, and P. Hlava, Metall. Mat. Trans. A 41, 3053 (2010). https://doi.org/10.1007/s11661-010-0379-z.

    Article  Google Scholar 

  37. T.H. Kim and Y.H. Kim, YH. JOM 56, 45 (2004). https://doi.org/10.1007/s11837-004-0111-9.

    Article  Google Scholar 

  38. L. Snugovsky, M.A. Ruggiero, D.D. Perovic and J.W. Rutter, Mat. Sci. and Tech. (2003). https://doi.org/10.1179/026708303225002794.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Wilcoxon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillman, D., Wilcoxon, R., Pearson, T. et al. Dissolution Rate of Electronics Packaging Surface Finish Elements in Sn3.0Ag0.5Cu Solder. J. Electron. Mater. 48, 5241–5256 (2019). https://doi.org/10.1007/s11664-019-07316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07316-1

Keywords

Navigation