Skip to main content
Log in

Interfacial Reaction and Wetting Behavior Between Pt and Molten Solder

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Platinum does not oxidize easily, and has slow reaction rates with Sn-based solders. Due to these two positive attributes, a single platinum layer has the potential to replace both the oxidation protection layer and the diffusion barrier layer in the underbump metallurgy of flip-chip devices. To evaluate this potential further, the dissolution rate and the wetting properties of Pt were investigated in this study. It was found that Pt did have a dissolution rate less than half that of Ni, currently the most popular barrier layer material. The wetting properties of Pt were not as good as those of Ni but were nevertheless still acceptable for industrial applications. In short, as far as the dissolution and the wetting characteristics are concerned, Pt is an effective top surface layer for use in underbump metallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.G. Bader. Weld. J. 48, 551 (1969).

    Google Scholar 

  2. B. Meagher, D. Schwarcz, M. Ohring. J. Mater. Sci. 31, 5479 (1996) doi:10.1007/BF01159320.

    Article  CAS  Google Scholar 

  3. J.F. Kuhmann, C·H. Chiang, P. Harde, F. Reier, W. Oesterle, I. Urban, and A. Klein, Mater. Sci. Eng. A 242, 22 (1998) doi:10.1016/S0921-5093(97)00536-4.

    Article  Google Scholar 

  4. B. Wiens. Z. Metallk. 91, 863 (2000).

    CAS  Google Scholar 

  5. M. Klein, B. Wiens, M. Hutter, H. Oppermann, R. Aschenbrenner, and H. Reichl, Proc. 50th Electronic Components and Technology Conf. (2000), pp. 40–45.

  6. T.H. Kim, Y.H. Kim. JOM 56, 45 (2004) doi:10.1007/s11837-004-0111-9.

    Article  CAS  Google Scholar 

  7. S.J. Wang, C.Y. Liu. Acta Mater. 55, 3327 (2007) doi:10.1016/j.actamat.2007.01.031.

    Article  CAS  Google Scholar 

  8. S. Bader, W. Gust, H. Hieber. Acta Mater. 43, 329 (1995).

    CAS  Google Scholar 

  9. D. Gur, M. Bamberger. Acta Mater. 46, 4917 (1998) doi:10.1016/S1359-6454(98)00192-X.

    Article  CAS  Google Scholar 

  10. H·K. Kim, H·K. Liou, K·N. Tu. Appl. Phys. Lett. 66, 2337 (1995) doi:10.1063/1.113975.

    Article  ADS  CAS  Google Scholar 

  11. S·K. Kang. Scr. Metall. 14, 421 (1980) doi:10.1016/0036-9748(80)90338-5.

    Article  CAS  Google Scholar 

  12. C.M. Liu (Master’s thesis, National Central University, Taiwan, 2000).

  13. W.J. Zhu, J. Wang, H·S. Liu, Z.P. Jin, W·P. Gong. Mater. Sci. Eng. A 456, 109 (2007) doi:10.1016/j.msea.2006.11.117.

    Article  Google Scholar 

  14. C.E. Ho, Y.M. Chen, C.R. Kao. J. Electron. Mater. 28, 1231 (1999) doi:10.1007/s11664-999-0162-3.

    Article  ADS  CAS  Google Scholar 

  15. C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin, C.R. Kao. J. Electron. Mater. 29, 1175 (2000) doi:10.1007/s11664-000-0010-y.

    Article  ADS  CAS  Google Scholar 

  16. C.E. Ho, S.Y. Tsai, C.R. Kao. IEEE Trans. Adv. Packag. 24, 493 (2001) doi:10.1109/6040.982835.

    Article  CAS  Google Scholar 

  17. C·W. Chang, C.E. Ho, S·C. Yang, C.R. Kao. J. Electron. Mater. 35, 1948 (2006) doi:10.1007/s11664-006-0298-3.

    Article  ADS  CAS  Google Scholar 

  18. C·W. Chang, Q.P. Lee, C.E. Ho, C.R. Kao. J. Electron. Mater. 35, 366 (2006) doi:10.1007/BF02692458.

    Article  ADS  CAS  Google Scholar 

  19. J.Y. Tsai, C·W. Chang, C.E. Ho, Y.L. Lin, C.R. Kao. J. Electron. Mater. 35, 65 (2006) doi:10.1007/s11664-006-0185-y.

    Article  ADS  CAS  Google Scholar 

  20. J.Y. Tsai, C·W. Chang, Y.C. Shieh, Y.C. Hu, C.R. Kao. J. Electron. Mater. 34, 182 (2005) doi:10.1007/s11664-005-0231-1.

    Article  ADS  CAS  Google Scholar 

  21. Y. Wang, K·N. Tu. Appl. Phys. Lett. 67, 1069 (1995) doi:10.1063/1.114467.

    Article  ADS  CAS  Google Scholar 

  22. H. Baker, ASM Handbook, Vol. 3, Alloy Phase Diagrams (Metals Park, OH: ASM Intl., 1992), p. 2.347.

  23. J.I. Lee, S·W. Chen, H.Y. Chang, C.M. Chen. J. Electron. Mater. 32, 117 (2003) doi:10.1007/s11664-003-0181-4.

    Article  ADS  CAS  Google Scholar 

  24. H.Y. Chang, S·W. Chen, D.S·H. Wong, H·F. Hsu. J. Mater. Res. 18, 1420 (2003) doi:10.1557/JMR.2003.0195.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.R. Kao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Chang, W., Wang, Y. et al. Interfacial Reaction and Wetting Behavior Between Pt and Molten Solder. J. Electron. Mater. 38, 25–32 (2009). https://doi.org/10.1007/s11664-008-0541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0541-1

Keywords

Navigation