Skip to main content
Log in

Facile Synthesis of 4-Methylaniline Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A promising material for supercapacitors based on 4-methylaniline reduced graphene oxide/polyaniline (GP) composite was successfully prepared through a facile one-pot synthesis route. During the preparation process, 4-methylaniline acted as a reducing agent for graphene oxide (GO) as well as a spacer for the resulting reduced graphene oxide (RGO) sheets. The characterization results reveal that GO was successfully reduced by 4-methylaniline and the RGO sheets covered by polyaniline (PANI) nanowires retain favorable dispersibility in the GP composite. The GP composite shows a high specific capacitance (530.4 F g−1 at 0.5 A g−1) with a good cycling stability (87.61% retention after 3000 cycles). Moreover, the GP composite also delivers a good rate performance of 77.5% retention from 0.5 A g−1 to 20 A g−1, but for the graphene oxide/polyaniline (GOP) composite and pure PANI, the retentions are only 47.2% and 28.9%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Maiti and B.B. Khatua, RSC Adv. 3, 12874 (2013).

    Article  Google Scholar 

  2. G.A. Snook, P. Kao, and A.S. Best, J. Power Sources 196, 1 (2011).

    Article  Google Scholar 

  3. F. Rezae, N.P. Tavandashti, and A.R. Zahedi, Res. Chem. Intermed. 40, 1233 (2014).

    Article  Google Scholar 

  4. L. Shao, Q. Wang, Z. Ma, Z. Ji, X. Wang, D. Song, Y. Liu, and N. Wang, J. Power Sources 379, 350 (2018).

    Article  Google Scholar 

  5. H.W. Park, T. Kim, J. Huh, M. Kang, J.E. Lee, and H. Yoon, ACS Nano 6, 7624 (2012).

    Article  Google Scholar 

  6. L. Ren, G. Zhang, J. Wang, L. Kang, Z. Lei, Z. Liu, Z. Liu, Z. Hao, and Z. Liu, Electrochim. Acta 145, 99 (2014).

    Article  Google Scholar 

  7. B. Mu, L. Peng, and A. Wang, Electrochim. Acta 88, 177 (2013).

    Article  Google Scholar 

  8. V. Gupta and N. Miura, Electrochim. Acta 52, 1721 (2006).

    Article  Google Scholar 

  9. M. Baibarac, I. Baltog, C. Godon, S. Lefrant, and O. Chauvet, Carbon 42, 3143 (2004).

    Article  Google Scholar 

  10. W. Zhao, M. Zhang, P. Pan, D. Song, S. Huang, J. Wei, X. Li, W. Qi, K. Zhanga, J. Zhao, and Z. Yang, Surf. Coat. Technol. 320, 595 (2017).

    Article  Google Scholar 

  11. S. Guo, H. Shen, Z. Tie, S. Zhu, P. Shi, J. Fan, Q. Xu, and Y. Min, J. Power Sources 359, 285 (2017).

    Article  Google Scholar 

  12. H. Wang, J. Liu, Z. Chen, S. Chen, T.C. Sum, J. Lin, and Z. Shen, Electrochim. Acta 230, 236 (2017).

    Article  Google Scholar 

  13. T. Kuila, A.K. Mishra, P. Khanra, N.H. Kim, and J.H. Lee, Nanoscale 5, 52 (2012).

    Article  Google Scholar 

  14. J. Yan, W. Tong, Z. Fan, W. Qian, M. Zhang, X. Shen, and W. Fei, J. Power Sources 195, 3041 (2010).

    Article  Google Scholar 

  15. A. Esfandiar, O. Akhavan, and A. Irajizad, J. Mater. Chem. 21, 10907 (2011).

    Article  Google Scholar 

  16. K. Zhang, L.L. Zhang, X.S. Zhao, and J. Wu, Chem. Mater. 22, 1392 (2010).

    Article  Google Scholar 

  17. J. Wang, H. Xian, T. Peng, H. Sun, and F. Zheng, RSC Adv. 5, 13607 (2015).

    Article  Google Scholar 

  18. Y. Xu, Y. Tao, X. Zheng, H. Ma, J. Luo, F. Kang, and Q.H. Yang, Adv. Mater. 27, 8082 (2015).

    Article  Google Scholar 

  19. M. Hasan, M.M. Hossain, and M. Lee, J. Ind. Eng. Chem. 32, 123 (2015).

    Article  Google Scholar 

  20. X. Cai, Q. Zhang, S. Wang, J. Peng, Y. Zhang, H. Ma, J. Li, and M. Zha, J. Mater. Sci. 49, 5667 (2014).

    Article  Google Scholar 

  21. W. Zhao, D.W. He, Y.S. Wang, Y. Hu, X. Du, and X. Hao, RSC Adv. 5, 98241 (2015).

    Article  Google Scholar 

  22. Y. Jin, M. Fang, and M. Jia, Appl. Surf. Sci. 308, 333 (2014).

    Article  Google Scholar 

  23. N. Chen, Y. Ren, P. Kong, L. Tan, H. Feng, and Y. Luo, Appl. Surf. Sci. 392, 71 (2017).

    Article  Google Scholar 

  24. H. Feng, B. Wang, T. Lin, N. Chen, N. Wang, and B. Chen, J. Power Sources 246, 621 (2014).

    Article  Google Scholar 

  25. N. Chen, F. Zhang, Y. Ren, L. Tan, H. Feng, and Y. Luo, Polym. Compos. 40, E877 (2019).

    Article  Google Scholar 

  26. W. Wu, Y. Li, L. Yang, Y. Ma, D. Pan, and Y. Li, Electrochim. Acta 139, 117 (2014).

    Article  Google Scholar 

  27. G.M. Neelgund, A. Oki, and Z. Luo, Mater. Res. Bull. 48, 175 (2013).

    Article  Google Scholar 

  28. Q. Wang, S. Qiu, S. Wang, J. Shang, R. Zhao, X. Wu, W. Chen, H. Zhou, and X. Wang, Synth. Met. 210, 314 (2015).

    Article  Google Scholar 

  29. Z. Luo, L. Zhu, Y. Huang, and H. Tang, Synth. Met. 175, 88 (2013).

    Article  Google Scholar 

  30. Y. Li, X. Zhao, Q. Xu, Q. Zhang, and D. Chen, Langmuir 27, 6458 (2011).

    Article  Google Scholar 

  31. J. Xu, K. Wang, S.Z. Zu, B.H. Han, and Z. Wei, ACS Nano 4, 5019 (2010).

    Article  Google Scholar 

  32. H. Sun, P. She, K.L. Xu, Y.X. Shang, S.Y. Yin, and Z.N. Liu, Synth. Met. 209, 68 (2015).

    Article  Google Scholar 

  33. Y.F. Huang and C.W. Lin, Polymer 53, 2574 (2012).

    Article  Google Scholar 

  34. Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, Energy Fuels 27, 568 (2013).

    Article  Google Scholar 

  35. Y. Yang and M. Wan, J. Mater. Chem. 12, 897 (2002).

    Article  Google Scholar 

  36. Y. Liao, D.G. Yu, X. Wang, W. Chain, X.G. Li, E.M. Hoek, and R.B. Kaner, Nanoscale 5, 3856 (2013).

    Article  Google Scholar 

  37. S. Xiong, Q. Wang, and Y. Chen, Mater. Lett. 61, 2965 (2007).

    Article  Google Scholar 

  38. Y. Feng, N. Feng, and G. Du, RSC Adv. 3, 21466 (2013).

    Article  Google Scholar 

  39. A.C. Ferrari and J. Robertson, Phys. Rev. B Condens. Matter 61, 14095 (2000).

    Article  Google Scholar 

  40. M.S. Ramasamy, S.S. Mahapatra, D.H. Yi, H.J. Yoo, and J.W. Cho, RSC Adv. 4, 23936 (2014).

    Article  Google Scholar 

  41. H.P. Cong, X.C. Ren, P. Wang, and S.H. Yu, Energ Environ. Sci. 6, 11851 (2013).

    Article  Google Scholar 

  42. J. Luo, L.J. Cote, V.C. Tung, A.T.L. Tan, P.E. Goins, J. Wu, and J. Huang, J. Am. Chem. Soc. 132, 17667 (2010).

    Article  Google Scholar 

  43. P. Gong, Z. Wang, Z. Fan, W. Hong, Z. Yang, J. Wang, and S. Yang, Carbon 72, 176 (2014).

    Article  Google Scholar 

  44. V.H. Nguyen, L. Tang, and J.J. Shim, Colloid Polym. Sci. 291, 2237 (2013).

    Article  Google Scholar 

  45. X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, and W. Huang, Adv. Funct. Mater. 21, 2989 (2011).

    Article  Google Scholar 

  46. L. Chen, J. Lei, F. Wang, G. Wang, and H. Feng, RSC Adv. 5, 40148 (2015).

    Article  Google Scholar 

  47. S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, ACS Nano 4, 2822 (2010).

    Article  Google Scholar 

  48. X. Li, Q. Zhong, X. Zhang, T. Li, and J. Huang, Thin Solid Films 584, 348 (2015).

    Article  Google Scholar 

  49. F. Yang, M. Xu, S.J. Bao, H. Wei, and H. Chai, Electrochim. Acta 137, 381 (2014).

    Article  Google Scholar 

  50. J. Luo, Q. Ma, H. Gu, Y. Zheng, and X. Liu, Electrochim. Acta 173, 184 (2015).

    Article  Google Scholar 

  51. Y. Yang, Y. Xi, J. Li, G. Wei, N.I. Klyui, and W. Han, Nanoscale Res. Lett. 12, 394 (2017).

    Article  Google Scholar 

  52. J. Chen, J. Song, and X. Feng, Polym. Bull. 74, 27 (2017).

    Article  Google Scholar 

  53. R.I. Jafri Jaidev, A.K. Mishra, and S. Ramaprabhu, J. Mater. Chem. 2, 17601 (2011).

    Article  Google Scholar 

  54. J. Luo, W. Zhong, Y. Zou, C. Xiong, and W. Yang, J. Power Sources 319, 73 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (21664009, 51063003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nali Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Liu, C., Tan, L. et al. Facile Synthesis of 4-Methylaniline Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors. J. Electron. Mater. 48, 4463–4472 (2019). https://doi.org/10.1007/s11664-019-07229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07229-z

Keywords

Navigation