Skip to main content
Log in

Preparation of polyaniline@graphene nanocomposite with oxidative polymerization of pre-assembled of aniline for supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we report a facile strategy to prepare polyaniline and graphene nanopieces (PANI@GNP) nanocomposite by the oxidative polymerization of the aniline pre-assembled on the GNP surface. The morphology, chemical structure and interfacial interaction of the synthesized samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and x-ray photoelectron spectroscopy (XPS). The resulting PANI@GNP nanocomposite with a 0.33:1 mass ratio of PANI to GNP, has a large specific surface area, electron doping interface, excellent conductivity and reversible redox activity. The PANI@GNP symmetrical supercapacitor with the unique π-π electronic interaction demonstrates 351.7 F/g of specific capacitance; 57.5% of the rate property when the the current density increases from 1 to 10 A/g; the capacity retained 80% of the initial value in constant current charge–discharge mode (at the current density of 10 A/g) after 2000 cycles. This scalable preparation process makes PANI@GNP nanocomposite promising application in electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the data in this manuscript is availability.

References

  1. Gao F, Mu J, Bi Z, Wang S, Li Z (2021) Recent advances of polyaniline composites in anticorrosive coatings: A review[J]. Prog Org Coat 151:106071. https://doi.org/10.1016/j.porgcoat.2020.106071

    Article  CAS  Google Scholar 

  2. Tian Z, Yu H, Wang L, Muhammad S, Ren F, Ren P, Chen Y, Sun R, Sun Y, Huang L (2014) Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. RSC Adv 54:28195–28208. https://doi.org/10.1039/C4RA03146F

  3. Wang J, Zheng R, Chen Y, Bai H, Zhang T (2020) Superacid-doped polyaniline as a soluble polymeric active electrolyte for supercapacitors. Soft Matter 16(31):7305–7311. https://doi.org/10.1039/d0sm00847h

    Article  CAS  PubMed  Google Scholar 

  4. Rahman M, Joy P, Uddin M, Mukhlish M, Khan M (2021) Improvement of capacitive performance of polyaniline based hybrid supercapacitor. Heliyon 7(7):e07407. https://doi.org/10.1016/J.HELIYON.2021.E07407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mahalakshmi S, Sridevi V (2021) In Situ Electrodeposited Gold Nanoparticles on Polyaniline-Modified Electrode Surface for the Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid. Electrocatalysis 12(4):415–435. https://doi.org/10.1007/S12678-021-00665-8

    Article  CAS  Google Scholar 

  6. Vanitha C, Sanmugam A, Yogananth A, Rajasekar M, Kuppusamy PG, Devasagayam G (2022) A facile synthesis of polyaniline-WO3 hybrid nanocomposite for enhanced dopamine detection. Mater Lett 328(1):133149. https://doi.org/10.1016/J.MATLET.2022.133149

    Article  CAS  Google Scholar 

  7. Rui M, Zhu A (2021) The synthesis and corrosion protection mechanisms of PANI/CNT nanocomposite doped with organic phosphoric acid. Prog Org Coat 153:106134. https://doi.org/10.1016/J.PORGCOAT.2021.106134

    Article  CAS  Google Scholar 

  8. Mu S (2011) Synthesis of poly(aniline-co-5-aminosalicylic acid) and its properties. Synth Met 161(13–14):1306–1312. https://doi.org/10.1016/j.synthmet.2011.04.028

    Article  CAS  Google Scholar 

  9. Mu S (2010) Nanostructured polyaniline synthesized using interface polymerization and its redox activity in a wide pH range. Synth Met 160(17–18):1931–1937. https://doi.org/10.1016/j.synthmet.2010.07.012

    Article  CAS  Google Scholar 

  10. Zhu A, Wang H, Zhang C, Rui M, Zhou C, Chen C (2017) A facile, solvent-free and scalable method to prepare poly(aniline-co-5-aminosalicylic acid) with enhanced electrochemical activity for corrosion protection. Prog Org Coat 112:109–117. https://doi.org/10.1016/j.porgcoat.2017.07.006

    Article  CAS  Google Scholar 

  11. Zhu A, Wang H, Zhang C (2018) In situ synthesis of graphene/poly(aniline-Co-5-aminosalicylic acid) nanocomposites toward improved electroactivity. Polym Compos 39(8):2915–2921. https://doi.org/10.1002/pc.24288

    Article  CAS  Google Scholar 

  12. Mahalakshmi S, Sridevi V (2019) Conducting, crystalline and electroactive polyaniline-Au nanocomposites through combined acid and oxidative doping pathways for biosensing applications: Detection of dopamine. Mater Chem Phys 235:121728–121728. https://doi.org/10.1016/j.matchemphys.2019.121728

    Article  CAS  Google Scholar 

  13. Kumar A, Kumar V, Awasthi K (2018) Polyaniline-Carbon Nanotube Composites: Preparation Methods. Properties, and Applications, Polymer-Plastics Technology and Engineering 57(2):70–97. https://doi.org/10.1080/03602559.2017.1300817

    Article  CAS  Google Scholar 

  14. Rajyalakshmi T, Pasha A, Khasim S, Lakshmi M, Murugendrappa MV, Badi N (2020) Enhanced Charge Transport and Corrosion Protection Properties of Polyaniline-Carbon Nanotube Composite Coatings on Mild Steel. J Electron Mater 49(1):341–352. https://doi.org/10.1007/s11664-019-07783-6

    Article  CAS  Google Scholar 

  15. Singh P, Shukla SK (2020) Advances in polyaniline-based nanocomposites. J Mater Sci 55(4):1331–1365. https://doi.org/10.1007/s10853-019-04141-z

    Article  CAS  Google Scholar 

  16. Huang Y, Zhang B, Wu J, Hong R, Xu J (2022) Preparation and Characterization of Graphene Oxide/Polyaniline/Polydopamine Nanocomposites towards Long-Term Anticorrosive Performance of Epoxy Coatings. Polymers 14(16):3355–3355. https://doi.org/10.3390/POLYM14163355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang J, Zhu A (2021) Study on the synthesis of PANI/CNT nanocomposite and its anticorrosion mechanism in waterborne coatings. Prog Org Coat 156:106447. https://doi.org/10.1016/J.PORGCOAT.2021.106447

    Article  Google Scholar 

  18. Babel V, Hiran BL (2021) A review on polyaniline composites: Synthesis, characterization, and applications. Polym Compos 42(7):3142–3157. https://doi.org/10.1002/PC.26048

    Article  CAS  Google Scholar 

  19. Huang Z, Li L, Wang Y, Zhang C, Liu T (2018) Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. Compos Commun 8:83–91. https://doi.org/10.1016/j.coco.2017.11.005

    Article  Google Scholar 

  20. Kausar A (2022) Polyaniline/graphene nanoplatelet nanocomposite towards high-end features and applications. Mater Res Innovations 26(4):249–261. https://doi.org/10.1080/14328917.2021.1934281

    Article  CAS  Google Scholar 

  21. Wang T, Yu J, Wang M, Cao Y, Dai W, Shen D, Guo L, Wu Y, Bai H, Dai D, Lyu J, Jiang N, Pan C, Lin C (2017) Effect of different sizes of graphene on thermal transport performance of graphene paper. Compos Commun 5:46–53. https://doi.org/10.1016/j.coco.2017.07.001

    Article  Google Scholar 

  22. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502. https://doi.org/10.1021/nl802558y

  23. Okhay O, Tkach A (2022) Polyaniline-Graphene Electrodes Prepared by Electropolymerization for High-Performance Capacitive Electrodes: A Brief Review. Batteries 8(10):191–191. https://doi.org/10.3390/BATTERIES8100191

    Article  CAS  Google Scholar 

  24. Li J, Ren J, Xu Y, Ji H, Zou X (2019) Facile synthesis and characterization of three-dimensional graphene/polyaniline composites with enhanced electrochemical properties. J Mater Sci Mater Electron 30(7):6650–6659. https://doi.org/10.1007/s10854-019-00974-1

    Article  CAS  Google Scholar 

  25. Wang Z, Jiang L, Wei Y, Zong C (2020) In-situ polymerization to prepare reduced graphene oxide/polyaniline composites for high performance supercapacitors. J Energy Storage 32:101742. https://doi.org/10.1016/j.est.2020.101742

  26. Park J, Yang X, Wickramasinghe D, Sundhoro M, Orbey N, Chow K-F, Yan M (2020) Functionalization of pristine graphene for the synthesis of covalent graphene–polyaniline nanocomposite. RSC Adv 10(44):26486–26493. https://doi.org/10.1039/d0ra03579c

  27. Li. Y, Zheng Y (2018) Preparation and electrochemical properties of polyaniline/reduced graphene oxide composites. J Appl Polym Sci 135(16):46103–46103. https://doi.org/10.1002/app.46103

  28. Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M (2016) Electrochemical deposition and characterization of polyaniline-graphene nanocomposite films and its corrosion protection properties. J Polym Res 23(5). https://doi.org/10.1007/s10965-016-0983-8

  29. Lv F, Xiong S, Wang X, Chu J, Zhang R, Gong M, Wu B, Li Z, Zhu C, Yang Z, Yang C (2021) Electrochemical fabrication of polyaniline/graphene paper (PANI/GP) supercapacitor electrode materials on free-standing flexible graphene paper. High Perform Polym 33(10):1124–1131. https://doi.org/10.1177/09540083211023128

    Article  CAS  Google Scholar 

  30. Hong XD, Fu JW, Liu Y (2019) Recent Progress on Graphene/Polyaniline Composites for High-performance Supercapacitors. Materials 12:1451. https://doi.org/10.3390/ma12091451

  31. Hameem H, Irfan SW, Samina H (2022) High performance nanostructured symmetric reduced graphene oxide/polyaniline supercapacitor electrode: effect of polyaniline morphology. Journal of Energy Storage 55(25):105–723. https://doi.org/10.1016/j.est.2022.105732

    Article  Google Scholar 

  32. Fu HY, Gao B, Li JH et al (2023) Honeycomb graphene-polyaniline nanocomposites as novel electrode materials for high-performance supercapacitors. New J Chem 47:11001–11014. https://doi.org/10.1039/D3NJ01332D

  33. Xu GH, Wang N, Wei JY et al (2012) Preparation of Graphene Oxide/Polyaniline Nanocomposite with Assistance of Supercritical Carbon Dioxide for Supercapacitor Electrodes Ind. Eng Chem Res 51:14390–14398. https://doi.org/10.1021/ie301734f

  34. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269. https://doi.org/10.1103/physrevb.49.14251

  35. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. https://doi.org/10.1103/physrevb.54.11169

    Article  CAS  Google Scholar 

  36. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  38. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  39. Sharma A, Goyal PK, Rawal I, Rajpal A, Khokhar A, Kumar V, Dahiya S (2022) Structural characteristics and opto-electrical properties of in-situ synthesized polyaniline films. Opt Mater 131:112712. https://doi.org/10.1016/J.OPTMAT.2022.112712

    Article  CAS  Google Scholar 

  40. Haba Y, Segal E, Narkis M, Titelman GI, Siegmann A (1999) Polymerization of aniline in the presence of DBSA in an aqueous dispersion. Synth Met 106(1):59–66. https://doi.org/10.1016/S0379-6779(99)00100-9

    Article  CAS  Google Scholar 

  41. Zhu A, Shi P, Sun S, Rui M (2019) Construction of rGO/Fe3O4/PANI nanocomposites and its corrosion resistance mechanism in waterborne acrylate-amino coating. Prog Org Coat 133:117–124. https://doi.org/10.1016/j.porgcoat.2019.04.011

    Article  CAS  Google Scholar 

  42. Cai K, Zuo S, Luo SP, Yao C, Liu W, Ma J, Mao H, Li Z (2016) Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv 98:95965–95972. https://doi.org/10.1039/C6RA19618G

    Article  CAS  Google Scholar 

  43. Fan H, Zhao N, Wang H, Xu J, Pan F (2014) 3D conductive network based free-standing PANI/RGO/MWNTs hybrid film for high performance flexible supercapacitor. J Mater Chem A 2(31):12340–12347. https://doi.org/10.1039/C4TA02118E

    Article  CAS  Google Scholar 

  44. Wang JD, Peng TJ, Xian HY, Sun HJ (2015) Preparation and supercapacitive performance of three dimensional reduced graphene oxide/polyaniline composite. Acta Phys Chim Sin 31(1):90–98. https://doi.org/10.1039/C4TA02118E

  45. Yang C, Zhang LL, Hu NT et al (2017) Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors. Chem Eng J 309:89–97. https://doi.org/10.1016/j.cej.2016.09.115

  46. Chu XY, Huang TQ, Hu YQ et al (2020) Wet-spinning assembly of nitrogen-doped graphene film for stable graphene-polyaniline supercapacitor electrodes with high mass loading. Sci China Mater 63(10):1889–1897. https://doi.org/10.1007/s40843-019-9436-1

  47. Liu ML, Long X, Tang HY et al (2022) The formation of uniform graphene-polyaniline hybrids using a completely miscible cosolvent that have an excellent electrochemical performance. New Carbon Mater 37(2):381–391

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by Industrial Prospect and Key Core Technology Projects of Jiangsu Province (SBE2019030778), Science and Technology Cooperation Funds of Yangzhou City and Yangzhou University (SSX2023000015) and Jiangsu Students’ Innovation and Entrepreneurship Training Program (No. 202211117016Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Zhu.

Ethics declarations

Conflicts of interests

None.

Disclaimer

The work in this manuscript is original and has not been submitted to elsewhere for publication consideration. The format, word count and figure number of this manuscript also agrees with the requirements of Journal of Polymer Research. All co-authors have agreed to submit to Journal of Polymer Research. If accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the publisher. We sincerely hope this manuscript would meet the requirements for publication in Journal of Polymer Research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1809 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, A., Zhang, J., Situ, B. et al. Preparation of polyaniline@graphene nanocomposite with oxidative polymerization of pre-assembled of aniline for supercapacitor electrodes. J Polym Res 30, 417 (2023). https://doi.org/10.1007/s10965-023-03794-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03794-4

Keywords

Navigation