Skip to main content
Log in

Hierarchical construction of polyaniline nanorods on sulfonated graphene for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, polyaniline (PANI)/sulfonated graphene (SG) hierarchical composites was prepared through the growth of polyaniline nanorods on the surface of SG. The morphology and structure of the composites were analyzed by scanning electron microscopy, fourier transform infrared spectroscopy, raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that SG was beneficial to the form of uniform PANI nanorods, and strong interactions could be formed between them. Due to the synergistic effect between PANI and SG, The SG/PANI composite electrode exhibited excellent electrochemical performances, especially extraordinarily high-rate capability. When the current density increased to 50 A g−1, SG/PANI with 81.5% PANI presented a high specific capacitance of 477.5 F g−1, which remained 86.3% of its initial value at 0.5 A g−1. The cycle life test show the composites have excellent stability (still remain 96.7%) after 2000 cycles. Moreover, an asymmetric supercapacitor was assembled coupling with graphene, which demonstrated remarkable specific energy density and power density simultaneously. The highest values could achieve 56.34 Wh kg−1 and 1200 W kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)

    CAS  Google Scholar 

  2. N. Jha, P. Ramesh, E. Bekyarova, M.E. Itkis, R.C. Haddon, High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture. Adv. Energy Mater. 2(4), 438–444 (2012)

    CAS  Google Scholar 

  3. C.Z. Yuan, L. Yang, L.R. Hou, L.F. Shen, X.G. Zhang, X.W. Lou, Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 5(7), 7883–7887 (2012)

    CAS  Google Scholar 

  4. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Sci. Mag. 343(6176), 1210–1211 (2014)

    CAS  Google Scholar 

  5. G.P. Wang, L. Zhang, J.J. Zhang, ChemInform abstract: a review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(47), 797–828 (2011)

    Google Scholar 

  6. Z.N. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2014)

    Google Scholar 

  7. J. Yan, Q. Wang, T. Wei, Z.J. Fan, Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 4(13), 1294–1305 (2014)

    Google Scholar 

  8. G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2), 213–234 (2013)

    CAS  Google Scholar 

  9. S. Dhibar, P. Bhattacharya, G. Hatui, C.K. Das, Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials. J. Alloys Compd. 625, 64–75 (2015)

    CAS  Google Scholar 

  10. X.B. Liu, P.B. Shang, Y.B. Zhang, X.L. Wang, Z.M. Fan, B.X. Wang, Y.Y. Zheng, Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes. J. Mater. Chem. A 2(37), 15273–15278 (2014)

    CAS  Google Scholar 

  11. G.A. Snook, P. Kao, A.S. Best, An overview of graphene in energy production and storage applications. J Power Sources 196(11), 4873–4885 (2011)

    Google Scholar 

  12. P.R. Deshmukh, N. Pusawale, V.S. Jamadade, U.M. Patil, C.D. Lokhande, Microwave assisted chemical bath deposited polyaniline films for supercapacitor application. J. Alloys Compd. 509(16), 5064–5069 (2011)

    CAS  Google Scholar 

  13. R. Yuksel, C. Durucan, H.E. Unalan, Ternary nanocomposite SWNT/WO3/PANI thin film electrodes for supercapacitors. J. Alloys Compd. 658, 183–189 (2015)

    Google Scholar 

  14. T.Y. Liu, L. Finn, M.H. Yu, H.Y. Wang, T. Zhai, X.H. Lu, Y.X. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Letter 14(5), 2522–2522 (2014)

    CAS  Google Scholar 

  15. Y. Zhao, B.R. Liu, L.J. Pan, G.H. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical device. Energy Environ. Sci. 6(10), 2856–2870 (2013)

    CAS  Google Scholar 

  16. N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L.M. Dai, J.B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6(2), 1715–1723 (2012)

    CAS  Google Scholar 

  17. E. Coskun, E.A. Zaragoza-Contreras, H.J. Salavagione, Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity. Carbon 50(6), 235–2243 (2012)

    Google Scholar 

  18. Y.F. Wang, X.W. Yang, L. Qiu, D. Li, Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ. Sci. 6(2), 477–481 (2012)

    Google Scholar 

  19. W. Chen, R.B. Rakhi, H.N. Alshareef, Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte. Nanoscale 5(10), 4134–4138 (2013)

    CAS  Google Scholar 

  20. S.Y. Gao, P.Y. Zang, L.Q. Dang, H. Xu, F. Shi, Z.H. Liu, Z.B. Lei, Extraordinarily high-rate capability of polyaniline nanorod arrays on graphene nanomesh. J. Power Sources 304, 111–118 (2016)

    CAS  Google Scholar 

  21. N.A. Kumar, J.B. Baek, Electrochemical supercapacitors from conducting polyaniline-graphene platforms. Chem. Commun. 50(48), 6298–6308 (2014)

    Google Scholar 

  22. A. Sumboja, X. Wang, J. Yan, P.S. Lee, Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochim. Acta 65(1), 190–195 (2012)

    CAS  Google Scholar 

  23. H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem. Commun. 10(7), 1056–1059 (2008)

    CAS  Google Scholar 

  24. L. Zhang, G.Q. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 115(34), 17206–17212 (2011)

    CAS  Google Scholar 

  25. K. Wang, H.P. Wu, Y.N. Meng, Z.X. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1), 14–31 (2013)

    Google Scholar 

  26. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)

    CAS  Google Scholar 

  27. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012)

    CAS  Google Scholar 

  28. X. Wang, C. Yang, H.D. Li, P. Liu, Synthesis and electrochemical performance of well-defined flake-shaped sulfonated graphene/polypyrrole composites via facile in situ doping polymerization. Electrochim. Acta 111(6), 729–737 (2013)

    CAS  Google Scholar 

  29. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    CAS  Google Scholar 

  30. L.F. Jin, G.C. Wang, X.W. Li, L.B. Li, Poly(2,5-dimercapto-1,3,4-thiadiazole)/ sulfonated graphene composite as cathode material for rechargeable lithium batteries. J. Appl. Electrochem. 41(4), 377–382 (2011)

    CAS  Google Scholar 

  31. A.R. Liu, C. Li, H. Bai, G.Q. Shi, Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J. Phys. Chem. C 114(4), 1822–1826 (2010)

    Google Scholar 

  32. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    CAS  Google Scholar 

  33. L. Wang, Y.J. Ye, X.P. Lu, Z.B. Wen, Z. Li, H.Q. Hou, Y.H. Song, Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci. Rep. 3(12), 3568 (2013)

    Google Scholar 

  34. H.L. Wang, Q.L. Hao, X.J. Yang, L.D. Lu, X. Wang, Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Mater. Interfaces. 2(3), 821–828 (2010)

    CAS  Google Scholar 

  35. Z.X. Wei, M.X. Wan, T. Lin, L.M. Dai, Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process. Adv. Mater. 15(2), 136–139 (2003)

    CAS  Google Scholar 

  36. P.P. Yu, Y.Z. Li, X. Zhao, L.H. Wu, Q.H. Zhang, Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor. Langmuir 30(18), 5306–5313 (2014)

    CAS  Google Scholar 

  37. B. Ma, X. Zhou, H. Bao, X. Li, G. Wang, Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors. J. Power Sources 215, 36–42 (2012)

    CAS  Google Scholar 

  38. Y. Liu, Y. Ma, S.Y. Guang, H.Y. Xu, X.Y. Su, Facile fabrication of three-dimensional highly ordered structural polyaniline–graphene bulk hybrid materials for high performance supercapacitor electrodes. J. Mater. Chem. A 2(3), 813–823 (2014)

    CAS  Google Scholar 

  39. N.R. Chiou, C.M. Lui, J.J. Guan, L.J. Lee, A.J. Epstein, Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2(6), 354–357 (2007)

    CAS  Google Scholar 

  40. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    CAS  Google Scholar 

  41. C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Innovation Project of Fujian Province (Grant No. 2012H6008) and Scientific and Technological Innovation Project of Fuzhou City (Grant No. 2013-G-92).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 627 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zheng, Y. Hierarchical construction of polyaniline nanorods on sulfonated graphene for high-performance supercapacitors. J Mater Sci: Mater Electron 29, 9954–9962 (2018). https://doi.org/10.1007/s10854-018-9037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9037-9

Navigation