Skip to main content
Log in

Morphology of polyaniline nanofibers synthesized under different conditions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Polyaniline nanofibers are readily synthesized by bulk polymerization; ammonium per sulphate (APS) is used as oxidizing agent and hydrochloric acid as dopant without any hard or soft templates. A detailed study was conducted on the effect of a variety of synthetic conditions on the size and morphology of the polyaniline nanostructure. These conditions include the concentration of dopant, and the APS-to-aniline and acid-to-aniline molar ratios. The morphology of the nanofibers was confirmed by SEM and TEM. XRD and FT-IR and UV–visible spectroscopy were used for structural characterization of nanofibers. The results showed that not only the microstructure of the polyaniline product, but also other characteristics, for example conductivity, crystallinity, and, more importantly, the efficiency of the process are strongly affected by the synthetic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Li, Ch. Zhang, Y. Li, H. Peng, K. Chen, Polymer 51, 1934–1939 (2010)

    Article  CAS  Google Scholar 

  2. D. Li, J.X. Huang, R.B. Kaner, Acc. Chem. Res. 42(1), 135–145 (2009)

    Article  CAS  Google Scholar 

  3. A. Kalendova, D. Vesely, J. Stejskal, Prog. Org. Coat 62, 105–116 (2008)

    Article  CAS  Google Scholar 

  4. S. Sathiyanarayanan, C. Jeyaprabha, G. Venkatachari, Mater. Chem. Phys. 107, 350–355 (2008)

    Article  CAS  Google Scholar 

  5. C. Bian, A. Yu, Synth. Met. 160, 1579–1583 (2010)

    Article  CAS  Google Scholar 

  6. S. Sivakkumar, J.S. Oh, D.W. Kim, J. Power Sour. 163, 573–577 (2006)

    Article  CAS  Google Scholar 

  7. R. Arsat, X.F. Yu, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Sens. Actuators B. Chem. 137, 529–532 (2009)

    Article  CAS  Google Scholar 

  8. J. Elizalde-Torres, H. Hu, A. Garcia-Valenzuela, Sens. Actuators B. Chem. 98, 218–226 (2004)

    Article  CAS  Google Scholar 

  9. J.X. Huang, R.B. Kaner, J. Am. Chem. Soc. 126, 851–855 (2004)

    Article  CAS  Google Scholar 

  10. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783–810 (2009)

    Article  CAS  Google Scholar 

  11. C. Laslau, Z.D. Zujovic, L. Zhang, G.A. Bowmaker, J. Travas-Sejdic, Chem. Mater. 21, 954–962 (2009)

    Article  CAS  Google Scholar 

  12. M. Zhao, X. Wu, Ch. Cai, J. Phys. Chem. 113, 4987–4996 (2009)

    CAS  Google Scholar 

  13. Q. Sun, Y. Deng, Eur. Polym. J. 44, 3402–3408 (2008)

    Article  CAS  Google Scholar 

  14. D. Wang, F. Ma, Sh. Qi, B. Song, Synth. Met. 160(19–20), 2077–2084 (2010)

  15. D. Li, R.B. Kaner, J. Am. Chem. Soc. 128, 968–975 (2006)

    Article  CAS  Google Scholar 

  16. E.M. Genies, A. Boyle, M. Lapkowski, C. Tsintavis, Synth. Met. 36, 139–182 (1990)

    Article  CAS  Google Scholar 

  17. A.G. MacDiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, Synth. Met. 18, 285–290 (1987)

    Article  CAS  Google Scholar 

  18. J.X. Huang, R.B. Kaner, Angew. Chem. Int. Ed. Engl. 43, 5817–5821 (2004)

    Article  CAS  Google Scholar 

  19. J.X. Huang, Pure Appl. Chem. 78, 15–27 (2006)

    Article  CAS  Google Scholar 

  20. J.X. Huang, R.B. Kaner, Chem. Commun. 4, 367–376 (2006)

    Article  Google Scholar 

  21. N.R. Chiou, A.J. Epstein, Adv. Mater. 17, 1679–1683 (2005)

    Article  CAS  Google Scholar 

  22. H.D. Tran, Y. Wang, J.M. D’Arcy, R.B. Kaner, ACS Nano 2, 1841–1848 (2008)

    Article  CAS  Google Scholar 

  23. S.P. Surwade, N. Manohar, S.K. Manohar, Macromolecules 42, 1792–1795 (2009)

    Article  CAS  Google Scholar 

  24. L.H.C. Mattoso, A.G. MacDiamid, A.J. Epstein, Synth. Met. 68, 1–11 (1994)

    Article  CAS  Google Scholar 

  25. K.G. Neoh, E.T. Kang, Polymer 34(18), 3921–3928 (1993)

    Article  CAS  Google Scholar 

  26. S. Bhadra, N.K. Singha, D.J. Khastgir, Appl. Polym. Sci. 104, 1900–1904 (2007)

    Article  CAS  Google Scholar 

  27. Y. Wang, M.F. Rubner, Synth. Met. 47, 255–266 (1992)

    Article  CAS  Google Scholar 

  28. Q. Tang, J. Wu, X. Sun, Q. Li, J. Lin, Langmuir 25(9), 5253–5257 (2009)

    Article  CAS  Google Scholar 

  29. E.T. Kang, K.G. Neoh, K.L. Tan, Prog. Polym. Sci. 23, 277–324 (1998)

    Article  CAS  Google Scholar 

  30. J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met. 24, 231–238 (1988)

    Article  CAS  Google Scholar 

  31. I. Sedenkova, J. Prokes, M. Trchova, J. Stejskal, Polym. Degrad. Stab. 93, 428–435 (2008)

    Article  CAS  Google Scholar 

  32. S. Bhadra, S. Chattopadhyay, N.K. Singha, D. Khastgir, J. Appl. Polym. Sci. 108, 57–64 (2008)

    Article  CAS  Google Scholar 

  33. V. Luthra, R. Singh, S.K. Gupta, A. Mansingh, Curr. Appl. Phys. 3, 219–222 (2003)

    Article  Google Scholar 

  34. N.T. Tung, H. Lee, Y. Song, N.D. Nghia, D. Sohn, Synth. Met. 160, 1303–1306 (2010)

    Article  CAS  Google Scholar 

  35. A.A. Athawale, M.V. Kulkarni, W. Chabukswar, Mater. Chem. Phys. 73, 106 (2002)

    Article  CAS  Google Scholar 

  36. W. Chen, H.T. Lee, Synth. Met. 47, 233 (1992)

    Article  CAS  Google Scholar 

  37. P. Chowdhury, B. Saha, J. Appl. Poly Sci. 103, 1626–1631 (2007)

    Article  CAS  Google Scholar 

  38. C.F. Zhou, X.S. Du, Z. Liu, S.P. Ringer, Y.W. Mai, Synth. Met. 159, 1302–1307 (2009)

    Article  CAS  Google Scholar 

  39. X.S. Du, C.F. Zhou, G.T. Wang, Y.W. Mai, Chem. Mater. 20, 3806–3808 (2008)

    Article  CAS  Google Scholar 

  40. S. Bhadra, N.K. Singha, S. Chattopadhyay, D. Khastgir, J. Polym. Sci.: B 45, 2048–2059 (2007)

    Article  Google Scholar 

  41. J. Yin, X. Zhao, X. Xia, L. Xiang, Y. Qiao, Polymer 49, 4413–4419 (2008)

    Article  CAS  Google Scholar 

  42. J. Li, X. Tang, H. Li, Y. Yan, Q. Zhang, Synth. Met. 160, 1153–1158 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr H. Shariat Panahi and the laboratories of the Coating Research Center of RIPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Rezaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaei, F., Tavandashti, N.P. & Zahedi, A.R. Morphology of polyaniline nanofibers synthesized under different conditions. Res Chem Intermed 40, 1233–1247 (2014). https://doi.org/10.1007/s11164-013-1035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1035-1

Keywords

Navigation